LQG制御…Homework
[1] 次のようなオブザーバベース・コントローラによる閉ループ系を考えます。ここで,新しい入力
と
がそれぞれ
と
の平方根行列(
に対し
を満足する行列
を
で表す)により重み付けられて,
次系の入力側(
を介して)と出力側に設置されています。また新しい出力
と入力
が取り出されており,それぞれ
と
の平方根行列により重み付けられています。
図1 LQG制御系設計の枠組み
可制御かつ可観測な制御対象

を安定化するオブザーバベース・コントローラ
![]()
を2次形式評価関数
![]()
を最小にするように、
と
を決定する問題を考えます。これらは
![]()
![]()
を満足する
と
を用いて、次のように与えられます。
![]()
![]()
このような制御方式をLQG制御と呼びます。
[2] 上の安定な閉ループ系は次式で表されます。
![Rendered by QuickLaTeX.com \displaystyle{(8)\quad \boxed{\begin{array}{l} \left[\begin{array}{cc} \dot{x}(t) \\ \dot{\hat{x}}(t) \end{array}\right]= \underbrace{ \left[\begin{array}{cc} A & -BF \\ HC&A-HC-BF \end{array}\right] }_{A_{CL1}} \left[\begin{array}{cc} {x}(t) \\ \hat{x}(t) \end{array}\right] + \underbrace{ \left[\begin{array}{cc} B'W^{\frac{1}{2}} & 0 \\ 0 & HV^{\frac{1}{2}} \end{array}\right] }_{B_{CL1}} \left[\begin{array}{cc} {w}(t) \\ {v}(t) \end{array}\right]\\ \left[\begin{array}{cc} {y'}(t) \\ {u'}(t) \end{array}\right] = \underbrace{ \left[\begin{array}{cc} Q^{\frac{1}{2}}C' & 0 \\ 0 & -R^{\frac{1}{2}}F \end{array}\right] }_{C_{CL1}} \left[\begin{array}{cc} {x}(t) \\ \hat{x}(t) \end{array}\right] \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-6e6de0ac1c24534b05d96168f970e1fc_l3.png)
これに座標変換
![]()
を行うと
![Rendered by QuickLaTeX.com \displaystyle{(10)\quad \boxed{\begin{array}{l} \left[\begin{array}{cc} \dot{x}(t) \\ \dot{e}(t) \end{array}\right]= \underbrace{ \left[\begin{array}{cc} A-BF & -BF \\ 0 & A-HC \end{array}\right] }_{A_{CL2}} \left[\begin{array}{cc} {x}(t) \\ {e}(t) \end{array}\right] +\underbrace{ \left[\begin{array}{cc} B'W^{\frac{1}{2}} & 0 \\ -B'W^{\frac{1}{2}} & HV^{\frac{1}{2}} \end{array}\right] }_{B_{CL2}} \left[\begin{array}{cc} {w}(t) \\ {v}(t) \end{array}\right]\\ \left[\begin{array}{cc} {y'}(t) \\ {u'}(t) \end{array}\right] = \underbrace{ \left[\begin{array}{cc} Q^{\frac{1}{2}}C' & 0 \\ -R^{\frac{1}{2}}F & -R^{\frac{1}{2}}F \end{array}\right] }_{C_{CL2}} \left[\begin{array}{cc} {x}(t) \\ {e}(t) \end{array}\right] \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-81a989326d7d4a34c5752f6aecf84dec_l3.png)
となります。このとき閉ループ系のインパルス応答は次式で与えられます。
![]()
●
に対して、評価関数
の総和は次式で与えられます。

ここで
は次式を満足します。
![]()
ラグランジュの未定定数法を適用するために、次の評価関数を考えます。
![]()
これを最小化する場合の必要条件は、次式となります。
![]()
以下では、次の分割を考えます。
![]()
[3]
の場合について、必要条件を一つ一つ調べていきます。
●![]()
![]()
において
![Rendered by QuickLaTeX.com \displaystyle{(18)\quad \begin{array}{l} \Pi A_{CL1}= \left[\begin{array}{cc} \Pi_{1}&\Pi_{3} \\ \Pi_{3}^T&\Pi_{2} \end{array}\right] \left[\begin{array}{cc} A & -BF \\ HC&A-HC-BF \end{array}\right]\\ = \left[\begin{array}{cc} \Pi_{1}A+\Pi_{3}HC & -\Pi_{1}BF+\Pi_{3}(A-HC-BF)\\ \Pi_{3}^TA+\Pi_{2}HC & -\Pi_{3}^TBF+\Pi_{2}(A-HC-BF) \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-c429aa33a0e5684bc85b0263996ad5ef_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(19)\quad \begin{array}{l} A_{CL1}^T\Pi =(\Pi A_{CL1})^T\\ =\left[\begin{array}{cc} A^T\Pi_{1}+C^TH^T\Pi_{3}^T&\\ -F^TB^T\Pi_{1}+(A-HC-BF)^T\Pi_{3}^T & \end{array}\right.\\ \left.\begin{array}{cc} A^T\Pi_{3}+C^TH^T\Pi_{2}\\ -F^TB^T\Pi_{3}+(A-HC-BF)^T\Pi_{2} \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-c914ac5d6ae500873c120fe9e3c82eef_l3.png)
![]()
を代入して、次を得ます。
![]()
![]()
![]()
(22)+(23)より

(23)より

(21)+(22)より

![]()
●![]()
![]()
において
![Rendered by QuickLaTeX.com \displaystyle{(29)\quad \begin{array}{l} A_{CL1}\Gamma= \left[\begin{array}{cc} A & -BF \\ HC&A-HC-BF \end{array}\right] \left[\begin{array}{cc} \Gamma_{1}&\Gamma_{3} \\ \Gamma_{3}^T&\Gamma_{2} \end{array}\right]\\ =\left[\begin{array}{cc} A\Gamma_{1} -BF\Gamma_{3}^T &A\Gamma_{3} -BF\Gamma_{2}\\ HC\Gamma_{1}+(A-HC-BF)\Gamma_{3}^T &HC\Gamma_{3}+(A-HC-BF)\Gamma_{2} \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-b5efbe327872da02c0cdae613082e8a5_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(30)\quad \begin{array}{l} \Gamma A_{CL1}^T =(A_{CL1}\Gamma)^T\\ =\left[\begin{array}{cc} \Gamma_{1}A^T -\Gamma_{3}F^TB^T & \Gamma_{1}C^TH^T+\Gamma_{3}(A-HC-BF)^T\\ \Gamma_{3}^TA^T -\Gamma_{2}F^TB^T & \Gamma_{3}^TC^TH^T+\Gamma_{2}(A-HC-BF)^T \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-166202eb44f8bebfc11fcdbb0cf09ab8_l3.png)
![]()
を代入して、次を得ます。
![]()
![]()
![]()
(33)-(34)より

(34)より

(32)-(33)より

![]()
●準備1
![]()
(1) ![]()
![]()
![]()
●準備2
![Rendered by QuickLaTeX.com \displaystyle{(42)\quad \begin{array}{l} \Pi A_{CL1}\Gamma= \left[\begin{array}{cc} \Pi_{1}&\Pi_{3} \\ \Pi_{3}^T&\Pi_{2} \end{array}\right] \left[\begin{array}{cc} A & -BF \\ HC&A-HC-BF \end{array}\right] \Gamma\\ =\left[\begin{array}{cc} \Pi_{1}A+\Pi_{3}HC & -\Pi_{1}BF+\Pi_{3}(A-HC-BF)\\ \Pi_{3}^TA+\Pi_{2}HC & -\Pi_{3}^TBF+\Pi_{2}(A-HC-BF) \end{array}\right] \left[\begin{array}{cc} \Gamma_{1}&\Gamma_{3} \\ \Gamma_{3}^T&\Gamma_{2} \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-5cf2147ab153e0a23d8488f0452990da_l3.png)

![]()
![]()
●準備3
![Rendered by QuickLaTeX.com \displaystyle{(46)\quad \begin{array}{l} A_{CL1}^T\Pi\Gamma=(\Pi A_{CL1})^T\Gamma=\\ \left[\begin{array}{cc} A^T\Pi_{1}+C^TH^T\Pi_{3}^T&\\ -F^TB^T\Pi_{1}+(A-HC-BF)^T\Pi_{3}^T & \end{array}\right.\\ \left.\begin{array}{cc} A^T\Pi_{3}+C^TH^T\Pi_{2}\\ -F^TB^T\Pi_{3}+(A-HC-BF)^T\Pi_{2} \end{array}\right] \left[\begin{array}{cc} \Gamma_{1}&\Gamma_{3} \\ \Gamma_{3}^T&\Gamma_{2} \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-98094a2e6a48cf9f59754bbc5f21fdef_l3.png)

![]()
![]()
●準備4
![]()
![]()
![]()
●![]()

●![]()

補遺 上述の議論では、次についての検討が必要です。
検討事項1 (13)の妥当性
検討事項2 (24),(35)における仮定の妥当性
検討事項3
の場合の導出
検討事項4 十分性の証明
図1 様々な倒立振子![Rendered by QuickLaTeX.com \displaystyle{(2.1)\quad \frac{d}{dt}\left[\begin{array}{c} r(t)\\ \theta(t)\\ \dot{r}(t)\\ \dot{\theta}(t) \end{array}\right] = \underbrace{ \left[\begin{array}{cccc} 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 0 & -\frac{3gm}{4M+m} & 0 & 0\\ 0 & \frac{3(M+m)g}{(4M+m)\ell} & 0 & 0\\ \end{array}\right] }_{A} \underbrace{ \left[\begin{array}{c} r(t)\\ \theta(t)\\ \dot{r}(t)\\ \dot{\theta}(t) \end{array}\right] }_{x(t)} + \underbrace{ \left[\begin{array}{c} 0\\ 0\\ \frac{4}{4M+m}\\ \frac{3}{(4M+m)\ell} \end{array}\right] }_{B} \underbrace{F(t)}_{u(t)} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-84a6ca484c9323a3fd95f4660cfea7d9_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(2.2)\quad u(t)= \underbrace{- \left[\begin{array}{cccc} f_1 & f_2 & f_3 & f_4 \end{array}\right] }_{-F} \underbrace{ \left[\begin{array}{c} r(t)\\ \theta(t)\\ \dot{r}(t)\\ \dot{\theta}(t) \end{array}\right] }_{x(t)} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-8d5882a8b8f1b74147cc2112bdbb8ae2_l3.png)

![Rendered by QuickLaTeX.com (3.1)\quad \begin{array}{l} \displaystyle{\frac{d}{dt}\left[\begin{array}{c} r(t)\\ \theta(t)\\ \dot{r}(t)\\ \dot{\theta}(t) \end{array}\right] = \underbrace{\left[\begin{array}{cccc} 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 0 & -\frac{6\cos\alpha mg}{8M+(5-3\cos2\alpha)m} & 0 & 0\\ 0 & \frac{6(M+m)g}{(8M+(5-3\cos2\alpha)m)\ell} & 0 & 0\\ \end{array}\right] }_{A} \underbrace{ \left[\begin{array}{c} r(t)\\ \theta(t)\\ \dot{r}(t)\\ \dot{\theta}(t) \end{array}\right] }_{x(t)}}\\ \displaystyle{+ \underbrace{\left[\begin{array}{c} 0\\ 0\\ \frac{8}{8M+(5-3\cos2\alpha)m}\\ \frac{6\cos\alpha}{(8M+(5-3\cos2\alpha)m)\ell} \end{array}\right] }_{B} \underbrace{(F(t)-F^*)}_{u(t)}} \end{array}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-1e8e92c6bb441706aa61fe16a4949d88_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(3.2)\quad u(t)= \underbrace{- \left[\begin{array}{cccc} f_1 & f_2 & f_3 & f_4 \end{array}\right] }_{-F} \underbrace{ \left[\begin{array}{c} r(t)\\ \theta(t)\\ \dot{r}(t)\\ \dot{\theta}(t) \end{array}\right] }_{x(t)} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-274a0a5464ab474a19584e0c009000c0_l3.png)

![Rendered by QuickLaTeX.com (4.1)\quad \begin{array}{l} \displaystyle{\frac{d}{dt}\left[\begin{array}{c} \theta_1(t)-\theta_1^*\\ \theta_2(t)\\ \dot{\theta}_1(t)\\ \dot{\theta}_2(t) \end{array}\right] =}\\ \displaystyle{\underbrace{\left[\begin{array}{cccc} 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ \frac{3(m_1+2m_2)g}{(4m_1+3m_2)\ell_1} & -\frac{9m_2g}{2(4m_1+3m_2)\ell_1} & 0 & 0\\ -\frac{9(m_1+2m_2)g}{2(4m_1+3m_2)\ell_1} & \frac{9m_2g}{(4m_1+3m_2)\ell_2} & 0 & 0\\ \end{array}\right] }_{A} \left[\begin{array}{c} \theta_1(t)-\theta_1^*\\ \theta_2(t)\\ \dot{\theta}_1(t)\\ \dot{\theta}_2(t) \end{array}\right]\\ \displaystyle{+ \underbrace{\left[\begin{array}{c} 0\\ 0\\ \frac{6}{2(4m_1+3m_2)\ell_1^2}\\ -\frac{9}{2(4m_1+3m_2)\ell_1\ell_2} \end{array}\right] }_{B} \underbrace{(\tau(t)-\tau^*)}_{u(t)}} \end{array}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-3da30b65a938c38050e7c91085f9fd66_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(4.2)\quad u(t)= \underbrace{- \left[\begin{array}{cccc} f_1 & f_2 & f_3 & f_4 \end{array}\right] }_{-F} \underbrace{ \left[\begin{array}{c} \theta_1(t)-\theta_1^*\\ \theta_2(t)\\ \dot{\theta}_1(t)\\ \dot{\theta}_2(t) \end{array}\right] }_{x(t)} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-9203232703f89cebce4d2815ea6198c8_l3.png)

![Rendered by QuickLaTeX.com (5.1)\quad \begin{array}{l} \displaystyle{\frac{d}{dt}\left[\begin{array}{c} r(t)\\ \theta_1(t)\\ \theta_2(t)\\ \dot{r}(t)\\ \dot{\theta}_1(t)\\ \dot{\theta}_2(t) \end{array}\right] =}\\ \displaystyle{\underbrace{\left[\begin{array}{cccccc} 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1\\ 0 & -\frac{3m_1g}{4M+m_1+m_2} & -\frac{3m_2g}{4M+m_1+m_2} & 0 & 0 & 0\\ 0 & \frac{3(4m+4m_1+m_2)g}{4(4M+m_1+m_2)\ell_1} & \frac{9m_2g}{4(4M+m_1+m_2)\ell_1} & 0 & 0& 0\\ 0 & \frac{9gm_1}{4(4M+m_1+m_2)\ell_2} & \frac{3(4m+m_1+4m_2)g}{4(4M+m_1+m_2)\ell_2} & 0 & 0& 0\\ \end{array}\right]}_{A} \left[\begin{array}{c} r(t)\\ \theta_1(t)\\ \theta_2(t)\\ \dot{r}(t)\\ \dot{\theta}_1(t)\\ \dot{\theta}_2(t) \end{array}\right]}\\ \displaystyle{+ \underbrace{ \left[\begin{array}{c} 0\\ 0\\ 0\\ \frac{4}{4M+m_1+m_2}\\ -\frac{3}{(4M+m_1+m_2)\ell_1}\\ -\frac{3}{(4M+m_1+m_2)\ell_2} \end{array}\right] }_{B} \underbrace{F(t)}_{u(t)} \end{array}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-b146d12ebbd934f835113e9f5a66a050_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(5.2)\quad u(t)= \underbrace{- \left[\begin{array}{cccccc} f_1 & f_2 & f_3 & f_4 & f_5 & f_6 \end{array}\right] }_{-F} \underbrace{ \left[\begin{array}{c} r(t)\\ \theta_1(t)\\ \theta_2(t)\\ \dot{r}(t)\\ \dot{\theta}_1(t)\\ \dot{\theta}_2(t) \end{array}\right] }_{x(t)} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-b79eb1ba937c787a6245460a8ab2b42c_l3.png)

![Rendered by QuickLaTeX.com (6.1)\quad \begin{array}{l} \displaystyle{ \frac{d}{dt}\left[\begin{array}{c} r(t)\\ \theta_1(t)\\ \theta_2(t)\\ \dot{r}(t)\\ \dot{\theta}_1(t)\\ \dot{\theta}_2(t) \end{array}\right] =}\\ \displaystyle{ \left[\begin{array}{cccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -\frac{3m_1g}{Mm_1+m_1^2+(3M+m1)m_2} & -\frac{3m_2g}{Mm_1+m_1^2+(3M+m1)m_2} \\ 0 & \frac{3(4Mm_1+4m_1^2+3m_2^2+3(18M+13m_1)m_2)g}{(4Mm_1+m_1^2+(3M+m1)m_2)\ell_1} & \frac{9(2M+m_1)m_2g}{(4Mm_1+m_1^2+(3M+m1)m_2)\ell_1} \\ 0 & \frac{9(2Mm_1+m_1^2+3(2M+m_1)m_2)g}{(4Mm_1+m_1^2+(3M+m_1)m_2)\ell_2} & \frac{3(4Mm_1+m_1^2+12(3M+m_1)m_2)g}{(4Mm_1+m_1^2+(3M+m_1)m_2)\ell_2} \\ \end{array}\right.}\\ \displaystyle{\left.\begin{array}{cccccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ \end{array}\right] \left[\begin{array}{c} r(t)\\ \theta_1(t)\\ \theta_2(t)\\ \dot{r}(t)\\ \dot{\theta}_1(t)\\ \dot{\theta}_2(t) \end{array}\right]}\\ \displaystyle{+ \underbrace{\left[\begin{array}{c} 0\\ 0\\ 0\\ \frac{4m_1+3m_2}{4Mm_1+m_1^2+(3M+m1)m_2}\\ -\frac{3(2m_1+m2)}{2Mm_1+m_1^2+(3M+m1)m_2}\\ \frac{3m_1}{2(4Mm_1+m_1^2+(3M+m_1)m_2)\ell_2} \end{array}\right] }_{B} \underbrace{F(t)}_{u(t)}} \end{array}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-c0d8773e32ffbef0fd7275146dab4774_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(6.2)\quad u(t)= \underbrace{- \left[\begin{array}{cccccc} f_1 & f_2 & f_3 & f_4 & f_5 & f_6 \end{array}\right] }_{-F} \underbrace{ \left[\begin{array}{c} r(t)\\ \theta_1(t)\\ \theta_2(t)\\ \dot{r}(t)\\ \dot{\theta}_1(t)\\ \dot{\theta}_2(t) \end{array}\right] }_{x(t)} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-7d04a46a79f37a8e8c816d56bf20170d_l3.png)


![Rendered by QuickLaTeX.com \displaystyle{(8)\quad \boxed{\left[\begin{array}{c} \dot{x}_1(t) \\ \dot{x}_2(t) \end{array}\right] = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right] + \left[\begin{array}{c} 0 \\ 1 \end{array}\right] u(t)} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-4872e6ab89edfca755c552863cc2bd93_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(11)\quad \begin{array}{l} \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] + \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right]\\ - \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right] \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right] + \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\\ = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-d28749ac5a43f35cf85d06d327748bb5_l3.png)


![Rendered by QuickLaTeX.com \displaystyle{(15)\quad \boxed{\left\{\begin{array}{l} %\underbrace{ \left[\begin{array}{c} \dot{x}_1(t) \\ \dot{x}_2(t) \end{array}\right] %}_{\dot{x}(t)} = %\underbrace{ \left[\begin{array}{cc} 0 & 1 \\ 0 & -2\zeta\omega_n \end{array}\right] %}_{A} %\underbrace{ \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right] + %\underbrace{ \left[\begin{array}{c} 0 \\ \omega_n^2 \end{array}\right] %}_{B} \\ y(t)= %\underbrace{ \left[\begin{array}{cc} 1 & 0 \end{array}\right] %}_{C} %\underbrace{ \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right] \end{array}\right.} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-4804d9477777bd149c8abe1925ce71fe_l3.png)


![Rendered by QuickLaTeX.com \displaystyle{(20)\quad \boxed{\left\{\begin{array}{l} %\underbrace{ \left[\begin{array}{c} \dot{x}_1(t) \\ \dot{x}_2(t) \end{array}\right] %}_{\dot x} = %\underbrace{ \left[\begin{array}{cc} 0 & 1 \\ -\omega_n^2 & -2\zeta\omega_n \end{array}\right] %}_{A} %\underbrace{ \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right] %}_{x} + %\underbrace{ \left[\begin{array}{c} 0 \\ \omega_n^2 \end{array}\right] %}_{B} u(t) \\ y(t)= %\underbrace{ \left[\begin{array}{cc} 1 & 0 \end{array}\right] %}_{C} %\underbrace{ \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right] \end{array}\right.} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-cff43f0c2dd25afe220d33c00beba1c3_l3.png)


![Rendered by QuickLaTeX.com \displaystyle{(23)\quad \boxed{M=\left[\begin{array}{cc} A & -BR^{-1}B^T \\ C^TQC & -A^T \end{array}\right]} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-7eb0ba79a865b0a2499ee0421c036a1b_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(24)\quad \begin{array}{l} \underbrace{ \left[\begin{array}{cc} A & -BR^{-1}B^T \\ -C^TQC & -A^T \end{array}\right]}_{M(2n\times 2n)} \underbrace{ \left[\begin{array}{c} V_1 \\ V_2 \end{array}\right]}_{V^-(2n\times n)}\\ = \underbrace{ \left[\begin{array}{c} V_1 \\ V_2 \end{array}\right]}_{V^-(2n\times n)} \underbrace{ {\rm diag}\{\lambda_1,\cdots,\lambda_n\} }_{\Lambda^-(n\times n)} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-f8a2558fcebdca5d42752fab2101867b_l3.png)


![Rendered by QuickLaTeX.com \displaystyle{(1)\quad \begin{array}{l} \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ 0 & -2\zeta\omega_n \end{array}\right] + \left[\begin{array}{cc} 0 & 0 \\ 1 & -2\zeta\omega_n \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right]\\ - \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right] \left[\begin{array}{c} 0 \\ \omega_n^2 \end{array}\right] r^{-2} \left[\begin{array}{cc} 0 & \omega_n^2 \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right]\\ + \left[\begin{array}{c} 1 \\ 0 \end{array}\right] q^{2} \left[\begin{array}{cc} 1 & 0 \end{array}\right] % \left[\begin{array}{cc} % q_1^2 & 0 \\ % 0 & q_2^2 % \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right] \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-e43567c4046c4807bb16901e4c9095c1_l3.png)


![Rendered by QuickLaTeX.com \displaystyle{(8)\quad \begin{array}{l} \left[\begin{array}{cc} f_1 & f_2 \end{array}\right]=r^{-2} \left[\begin{array}{cc} 0 & \omega_n^2 \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right]=r^{-2}\omega_n^2 \left[\begin{array}{cc} \pi_3 & \pi_2 \end{array}\right]\\ = \left[\begin{array}{cc} \frac{q}{r} & \frac{2}{\omega_n}\left(-\zeta+\sqrt{\zeta^2+\frac{1}{2}\frac{q}{r}}\right) \end{array}\right] \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ac9df3a510b53e5194c148972b29d62f_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(1)\quad \begin{array}{l} \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ 0 & -2\zeta\omega_n \end{array}\right] + \left[\begin{array}{cc} 0 & 0 \\ 1 & -2\zeta\omega_n \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right]\\ - \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right] \left[\begin{array}{c} 0 \\ \omega_n^2 \end{array}\right] r^{-2} \left[\begin{array}{cc} 0 & \omega_n^2 \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right]\\ + \left[\begin{array}{cc} q_1^2 & 0 \\ 0 & q_2^2 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right] \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ddd699d8aac23ef2a497f48ee1ecff2d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(1)\quad \begin{array}{ll} \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ -\omega_n^2 & -2\zeta\omega_n \end{array}\right] + \left[\begin{array}{cc} 0 & -\omega_n^2 \\ 1 & -2\zeta\omega_n \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right]\\ - \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right] \left[\begin{array}{c} 0 \\ \omega_n^2 \end{array}\right] r^{-2} \left[\begin{array}{cc} 0 & \omega_n^2 \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right]\\ + \left[\begin{array}{c} 1 \\ 0 \end{array}\right] q^2 \left[\begin{array}{cc} 1 & 0 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right] \end{array}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-2773454b3e211d96ee83363fb88da2a2_l3.png)





![Rendered by QuickLaTeX.com \displaystyle{(8)\quad \begin{array}{l} \left[\begin{array}{cc} f_1 & f_2 \end{array}\right]=r^{-2} \left[\begin{array}{cc} 0 & \omega_n^2 \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right]=r^{-2}\omega_n^2 \left[\begin{array}{cc} \pi_3 & \pi_2 \end{array}\right]\\ = \left[\begin{array}{cc} -1+\sqrt{1+\left(\frac{q}{r}\right)^2} & -\frac{2}{\omega_n}\left(-\zeta+\sqrt{\zeta^2-\frac{1}{2}+\frac{1}{2}\sqrt{1+\left(\frac{q}{r}\right)^2}}\right) \end{array}\right] \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-b52bac7cab88d375a41fa037afb2d31a_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(1)\quad \begin{array}{l} \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ -\omega_n^2 & -2\zeta\omega_n \end{array}\right] + \left[\begin{array}{cc} 0 & -\omega_n^2 \\ 1 & -2\zeta\omega_n \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right]\\ - \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right] \left[\begin{array}{c} 0 \\ \omega_n^2 \end{array}\right] r^{-2} \left[\begin{array}{cc} 0 & \omega_n^2 \end{array}\right] \left[\begin{array}{cc} \pi_1 & \pi_3 \\ \pi_3 & \pi_2 \end{array}\right]\\ + \left[\begin{array}{cc} q_1^2 & 0 \\ 0 & q_2^2 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right] \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-e85a2fc5c10628fc6c41a4d64cd73e6c_l3.png)

![Rendered by QuickLaTeX.com (4)\quad \begin{array}{l} \Pi A+A^T\Pi\\ \displaystyle{=\int_0^\infty\exp(A^Tt)\exp(At)dt A+A^T \int_0^\infty\exp(A^Tt)\exp(At)dt}\\ \displaystyle{=\int_0^\infty\frac{d}{dt}(\exp(A^Tt)\exp(At))dt=\left[\exp(A^Tt)\exp(At)\right]_0^\infty\\ =\exp(A^T\infty)\underbrace{\exp(A\infty)}_{0}-\exp(A^T0)\underbrace{\exp(A0)}_{I_n}=-I_n}\\ \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-59a1e80997a4165ad1b001b5bb29d526_l3.png)

![Rendered by QuickLaTeX.com \displaystyle{(6)\quad \underbrace{ \left[\begin{array}{cc} p_1 & p_3 \\ p_3 & p_2 \end{array}\right] }_{P} \underbrace{ \left[\begin{array}{cc} 0 & 1 \\ -2 & -3 \end{array}\right] }_{A} + \underbrace{ \left[\begin{array}{cc} 0 & -2 \\ 1 & -3 \end{array}\right] }_{A^T} \underbrace{ \left[\begin{array}{cc} p_1 & p_3 \\ p_3 & p_2 \end{array}\right] }_{P} =- \underbrace{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] }_{I_2} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-85e9e5691877d6104d33dc0ab99c2307_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(7)\quad \left[\begin{array}{ccc} 0 & 0 & -4 \\ 1 & -2 & -3 \\ 0 & -6 & 2 \end{array}\right] \left[\begin{array}{c} p_1 \\ p_2 \\ p_3 \end{array}\right] = \left[\begin{array}{c} -1 \\ 0 \\ -1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-141e2af5be5bb2484bbf9f73b996b8f4_l3.png)

![Rendered by QuickLaTeX.com (10)\quad \begin{array}{l} \Pi A+A^T\Pi\\ \displaystyle{=\int_0^\infty\exp(A^Tt)C^TC\exp(At)dt A+A^T \int_0^\infty\exp(A^Tt)C^TC\exp(At)dt}\\ \displaystyle{=\int_0^\infty\frac{d}{dt}(\exp(A^Tt)C^TC\exp(At))dt=\left[\exp(A^Tt)C^TC\exp(At)\right]_0^\infty\\ =\exp(A^T\infty)C^TC\underbrace{\exp(A\infty)}_{0}-\exp(A^T0)C^TC\underbrace{\exp(A0)}_{I_n}=-C^TC}\\ \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-19deb8818548c3e2e4134cf297e36e9a_l3.png)


![Rendered by QuickLaTeX.com \displaystyle{(105)\quad \boxed{\begin{array}{l} D_1=a_1 \\ D_2={\rm det}< \left[\begin{array}{cc} a_1 & a_3 \\ a_0 & a_2 \end{array}\right] \\ D_3={\rm det} \left[\begin{array}{ccc} a_1 & a_3 & a_5 \\ a_0 & a_2 & a_4 \\ 0 & a_1 & a_3 \end{array}\right] \\ \vdots \\ D_{n-1}={\rm det} \left[\begin{array}{ccccc} a_1 & a_3 & a_5 & \cdots & a_{2n-3} \\ a_0 & a_2 & a_4 & \cdots & a_{2n-4} \\ 0 & a_1 & a_3 & \cdots & a_{2n-5} \\ 0 & a_0 & a_2 & \cdots & a_{2n-6} \\ 0 & 0 & a_1 & \cdots & a_{2n-7} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} \\ \end{array}\right] \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-cc23ec66f0d8f9ecc82f04778b09aa0e_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(108)\quad A=\left[\begin{array}{cccccc} 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & 1\\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-c7d5fc3807d87258ca18739049a3c9c4_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(109)\quad B=\left[\begin{array}{ccccccc} 0 & 1 & \cdots & 0 & 0 & 0 \\ -b_n & 0 & \cdots & 0 & 0 & 0 \\ 0 & -b_{n-1} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots& \vdots\\ 0 & 0 & \cdots & -b_3 & 0 & 1 \\ 0 & 0 & \cdots & 0 & -b_2 & -b_1 \end{array}\right]=TAT^{-1} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-cdf74d6527d9a40e2edc50d31ea063c0_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(111)\quad \Pi=\left[\begin{array}{ccccccc} b_1b_2\cdots b_n & 0 & \cdots & 0 \\ 0 & b_1b_2\cdots b_{n-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & b_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-6699b7ac084d6a76d67a99ac23fa9a16_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(113)\quad \left[\begin{array}{ccccccc} b_1b_2\cdots b_n & 0 & \cdots & 0 \\ 0 & b_1b_2\cdots b_{n-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & b_1 \end{array}\right] \left[\begin{array}{ccccccc} 0 & 1 & \cdots & 0 & 0 & 0 \\ -b_n & 0 & \cdots & 0 & 0 & 0 \\ 0 & -b_{n-1} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots& \vdots\\ 0 & 0 & \cdots & -b_3 & 0 & 1 \\ 0 & 0 & \cdots & 0 & -b_2 & -b_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-5000a96cd5039f37342bd31231f6bdc9_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{ = \left[\begin{array}{ccccccc} 0 & b_1b_2\cdots b_n & \cdots & 0 & 0 & 0 \\ -b_1b_2\cdots b_n & 0 & \cdots & 0 & 0 & 0 \\ 0 & -b_1b_2\cdots b_{n-1} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots& \vdots\\ 0 & 0 & \cdots & -b_1b_2b_3 & 0 & b_1b_2 \\ 0 & 0 & \cdots & 0 & -b_1b_2 & -b_1^2 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-0d026755db647d96cd2f69b8819ea73f_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(114)\quad &&\Pi B+B^T\Pi= \left[\begin{array}{ccccccc} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & -2b_1^2 \end{array}\right] =- \underbrace{ \left[\begin{array}{cccc} 0 \\ \vdots \\ 0 \\ \sqrt{2}b_1 \end{array}\right] }_{H^T} \underbrace{ \left[\begin{array}{cccc} 0 & \cdots & 0 & \sqrt{2}b_1 \end{array}\right] }_{H} \nonumber }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-f8ab89e9688d8e627f8beae5f665393c_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(115)\quad {\rm rank} \left[\begin{array}{ccccccc} B-\lambda I_n \\ H \end{array}\right] = {\rm rank} \left[\begin{array}{ccccccc} -\lambda & 1 & \cdots & 0 & 0 & 0 \\ -b_n & -\lambda & \cdots & 0 & 0 & 0 \\ 0 & -b_{n-1} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots& \vdots\\ 0 & 0 & \cdots & -b_3 & -\lambda& 1 \\ 0 & 0 & \cdots & 0 & -b_2 & -b_1-\lambda \\ 0 & 0 & \cdots & 0 & 0 & \sqrt{2}b_1 \end{array}\right]=n }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-3b8414a60038a059b11aa00019bc8ffc_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(117)\quad A=\left[\begin{array}{cccccc} 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & 1\\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-e8e53c908512662a1ea7325469a8ff3f_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(118)\quad B=\left[\begin{array}{ccccccc} 0 & 1 & \cdots & 0 & 0 & 0 \\ -b_n & 0 & \cdots & 0 & 0 & 0 \\ 0 & -b_{n-1} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots& \vdots\\ 0 & 0 & \cdots & -b_3 & 0 & 1 \\ 0 & 0 & \cdots & 0 & -b_2 & -b_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-3dc206086d1292a18c0690d402c2c609_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(122)\quad \Lambda=\left[\begin{array}{ccccccc} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_n \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-633928ba777d0e14931171b0cd98fc55_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(123)\quad V_A=\left[\begin{array}{ccccccc} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-bea0f2e6122a57e8ed81f0c2e1207e84_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{ A=\left[\begin{array}{cccccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_3 & -a_2 & -a_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-b78bd1f02bf94aeda3823f4c8a63a447_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{ B=\left[\begin{array}{cccccc} 0 & 1 & 0 \\ -b_3 & 0 & 1 \\ 0 & -b_2 & -b_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-671723d030ae668b83b04db608c87a02_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{ \left[\begin{array}{cccccc} 0 & 1 & 0 \\ -b_3 & 0 & 1 \\ 0 & -b_2 & -b_1 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array}\right]= \lambda \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-e54f5e4b2f7794e495f792b5d85297e9_l3.png)

![Rendered by QuickLaTeX.com \displaystyle{ \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array}\right]= \left[\begin{array}{l} 1 \\ \lambda \\ \lambda^2+b_3 \end{array}\right] = \underbrace{ \left[\begin{array}{cccccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ b_3 & 0 & 1 \end{array}\right]}_{\Gamma} \left[\begin{array}{c} 1 \\ \lambda \\ \lambda^2 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-d7b5153ea774cdb5e3261c19e75b6f9e_l3.png)

![Rendered by QuickLaTeX.com \displaystyle{ A=\left[\begin{array}{cccccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a_4 & -a_3 & -a_2 & -a_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-7ff706457d487dadae751b14f7d3acaa_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{ B=\left[\begin{array}{cccccc} 0 & 1 & 0 & 0 \\ -b_4 & 0 & 1 & 0 \\ 0 & -b_3 & 0 & 1 \\ 0 & 0 & -b_2 & -b_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-da5df5023f6c35c4de93859da6ea9fde_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{ \left[\begin{array}{cccccc} 0 & 1 & 0 & 0 \\ -b_4 & 0 & 1 & 0 \\ 0 & -b_3 & 0 & 1 \\ 0 & 0 & -b_2 & -b_1 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \\ v_4 \end{array}\right]= \lambda \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \\ v_4 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-399fe6c79f1dd6f54f84d18c4054af42_l3.png)

![Rendered by QuickLaTeX.com \displaystyle{ \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \\ v_4 \end{array}\right]= \left[\begin{array}{l} 1 \\ \lambda \\ \lambda^2+b_4 \\ \lambda^3+(b_3+b_4)\lambda \end{array}\right] = \underbrace{ \left[\begin{array}{cccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ b_4 & 0 & 1 & 0 \\ 0 & b_3+b_4 & 0 & 1 \end{array}\right]}_{\Gamma} \left[\begin{array}{c} 1 \\ \lambda \\ \lambda^2 \\ \lambda^3 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-f33ce8a3dfbcf995152d8b4e5697ef53_l3.png)

![Rendered by QuickLaTeX.com \displaystyle{ A=\left[\begin{array}{cccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -a_5 & -a_4 & -a_3 & -a_2 & -a_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-f0a9e02ff4a508c3702747c6f22eeac1_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{ B=\left[\begin{array}{cccccc} 0 & 1 & 0 & 0 & 0 \\ -b_5 & 0 & 1 & 0 & 0 \\ 0 & -b_4 & 0 & 1 & 0 \\ 0 & 0 & -b_3 & 0 & 1 \\ 0 & 0 & 0 & -b_2 & -b_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-3fd5a82630d2f98d35fb92d870129912_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{ \left[\begin{array}{cccccc} 0 & 1 & 0 & 0 & 0 \\ -b_5 & 0 & 1 & 0 & 0 \\ 0 & -b_4 & 0 & 1 & 0 \\ 0 & 0 & -b_3 & 0 & 1 \\ 0 & 0 & 0 & -b_2 & -b_1 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{array}\right]= \lambda \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-0c8ad97efe9f7c22114534ef6080b3f5_l3.png)

![Rendered by QuickLaTeX.com \displaystyle{ \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{array}\right]= \left[\begin{array}{l} 1 \\ \lambda \\ \lambda^2+b_5 \\ \lambda^3+(b_4+b_5)\lambda \\ \lambda^4+(b_3+b_4+b_5)\lambda^2+b_3b_5 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-cf3aab51d558601a7ac9dadd513c23e7_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{ = \underbrace{ \left[\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ b_5 & 0 & 1 & 0 & 0 \\ 0 & b_4+b_5 & 0 & 1 & 0 \\ b_3b_5 & 0 & b_3+b_4+b_5 & 0 & 1 \end{array}\right]}_{\Gamma} \left[\begin{array}{c} 1 \\ \lambda \\ \lambda^2 \\ \lambda^3 \\ \lambda^4 \end{array}\right] \nonumber }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ac175e71aca1a6030212e539c67f8b9d_l3.png)


![Rendered by QuickLaTeX.com {\rm rank}\, \underbrace{ \left[\begin{array}{c} C \\ CA \\ \vdots\\ CA^{n-1} \end{array}\right] }_{observability\ matrix} =n](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-6253173de124e69f731cff9f00238073_l3.png)




![Rendered by QuickLaTeX.com \displaystyle{(15)\quad \boxed{\left\{\begin{array}{lll} \hat{A}=A_{22}-LA_{12}\\ \hat{B}=A_{21}-LA_{11}+\hat{A}L\\ \hat{C}= \left[\begin{array}{cc} 0\\ I_{n-p} \end{array}\right]\\ \hat{D}= \left[\begin{array}{cc} I_{p}\\ L \end{array}\right] \end{array}\right.} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ba9d6526eff83e7894d3ec54c6f96e0f_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(16)\quad \left[\begin{array}{c} \dot{\theta}(t)\\ \dot{\omega}(t) \end{array}\right]= \underbrace{ \left[\begin{array}{cc} 0 & 1 \\ 0 & -\frac{1}{T_m} \end{array}\right] }_{A} \left[\begin{array}{c} \theta(t)\\ \omega(t) \end{array}\right]+ \underbrace{ \left[\begin{array}{c} 0\\ \frac{1}{K_ET_m} \end{array}\right] }_{B} u(t) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-e95207cda654ebaf7485fe467b4eff54_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(17)\quad y(t)= \underbrace{ \left[\begin{array}{cc} 1 & 0 \end{array}\right] }_{C} \left[\begin{array}{c} \theta(t)\\ \omega(t) \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-181f79035e64702aea850bc818dfa728_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(18)\quad \left\{\begin{array}{lll} \hat{A}=-\frac{1}{T_m}-L\\ \hat{B}=\hat{A}L\\ \hat{C}= \left[\begin{array}{cc} 0\\ 1 \end{array}\right]\\ \hat{D}= \left[\begin{array}{cc} 1\\ L \end{array}\right]\\ \hat{J}=\frac{1}{K_ET_m} \end{array}\right. }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-5c9ef1b1a40ae6aeaab1a8d4e8bfc53c_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(19)\quad \left\{\begin{array}{lll} \dot{\hat{z}}(t)=\underbrace{-\frac{\alpha}{T_m}}_{\hat{A}}\hat{z}(t) +\underbrace{\frac{\alpha(1-\alpha)}{T_m^2}}_{\hat{B}}y(t) +\underbrace{\frac{1}{K_ET_m}}_{\hat{J}}u(t),\ \hat{z}(0)=0\\ \hat{x}(t)= \underbrace{ \left[\begin{array}{cc} 0\\ 1 \end{array}\right]}_{\hat{C}}\hat{z}(t) + \underbrace{ \left[\begin{array}{cc} 1\\ L \end{array}\right] }_{\hat{D}}y(t) \end{array}\right. }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-9bfd472ab38f4e90833894fadfad6f9d_l3.png)
図1 状態推定の例


![Rendered by QuickLaTeX.com \displaystyle{(10)\quad \left\{\begin{array}{l} \left[\begin{array}{c} \dot{y}(t)\\ \ddot{y}(t) \end{array}\right]= \underbrace{ \left[\begin{array}{cc} 0 & I_p \\ A_{21} & A_{22} \end{array}\right] }_{A} \left[\begin{array}{c} y(t)\\ \dot{y}(t) \end{array}\right]+ \underbrace{ \left[\begin{array}{c} 0\\ B_2 \end{array}\right] }_{B} u(t)\\ y(t)= \underbrace{ \left[\begin{array}{cc} I_n & 0 \end{array}\right] }_{C} \left[\begin{array}{c} y(t)\\ \dot{y}(t) \end{array}\right] \end{array}\right. }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-70c3410208fc14d4768b6a45442062a9_l3.png)

![Rendered by QuickLaTeX.com \displaystyle{(14)\quad \begin{array}{l} \underbrace{ \lambda K_2\left[\begin{array}{cc} -L & I_p \end{array}\right] + K_2(A_{21}+\lambda L) \left[\begin{array}{cc} I_n & 0 \end{array}\right] }_{\hat{A}U+\hat{B}C} = \underbrace{ K_2\left[\begin{array}{cc} -L & I_p \end{array}\right] \left[\begin{array}{cc} 0 & I_p \\ A_{21} & A_{22} \end{array}\right] }_{UA}\\ \underbrace{ K_2B_2 }_{\hat{J}} = \underbrace{ K_2\left[\begin{array}{cc} -L & I_p \end{array}\right] \left[\begin{array}{c} 0\\ B_2 \end{array}\right] }_{UB}\\ \underbrace{ 1\cdot K_2\left[\begin{array}{cc} -L & I_p \end{array}\right] + (K_1+K_2L) \left[\begin{array}{cc} I_n & 0 \end{array}\right] }_{\hat{C}U+\hat{D}C} = \underbrace{ \left[\begin{array}{cc} K_1 & K_2 \end{array}\right] }_{K} \end{array}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-92fe0b99d4f40416cb7cd4fdcf78d696_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(16)\quad \boxed{\left[\begin{array}{c} \dot{x}(t) \\ \dot{e}(t) \end{array}\right]= \underbrace{ \left[\begin{array}{cc} A-BF & -B\hat{C} \\ 0 & \hat{A} \end{array}\right] }_{A_{CL}} \left[\begin{array}{c} x(t) \\ e(t) \end{array}\right]} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-a941bbb0ba1845c0025a886fd7d9e55a_l3.png)

図1 状態オブザーバの考え方(1)
図2 状態オブザーバの考え方(2)![Rendered by QuickLaTeX.com \displaystyle{(13)\quad \left[\begin{array}{c} \dot{\theta}(t)\\ \dot{\omega}(t) \end{array}\right]= \underbrace{ \left[\begin{array}{cc} 0 & 1 \\ 0 & -\frac{1}{T_m} \end{array}\right] }_{A} \left[\begin{array}{c} \theta(t)\\ \omega(t) \end{array}\right]+ \underbrace{ \left[\begin{array}{c} 0\\ \frac{1}{K_ET_m} \end{array}\right] }_{B} u(t) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-a95eaa65d14cb9fd7e4b2c26e0599949_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(14)\quad y(t)= \underbrace{ \left[\begin{array}{cc} 1 & 0 \end{array}\right] }_{C} \left[\begin{array}{c} \theta(t)\\ \omega(t) \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-b3827f897e0c0c4d4bd29eb0213d28ef_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(15)\quad \left[\begin{array}{c} \dot{\hat{\theta}}(t)\\ \dot{\hat{\omega}}(t) \end{array}\right] =(A-HC) \left[\begin{array}{c} \hat{\theta}(t)\\ \hat{\omega}(t) \end{array}\right] +Bu(t)+Hy(t) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-d8751c5f7f39274e29ad827c0d037478_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(19)\quad \begin{array}{l} \det \left[\begin{array}{cc} \lambda+h_1 & -1 \\ h_2 & \lambda+\frac{1}{T_m} \end{array}\right]\\ =(\lambda+h_1)(\lambda+\frac{1}{T_m})+h_2\\ =\lambda^2+(h_1+\frac{1}{T_m})\lambda+h_1\frac{1}{T_m}+h_2\\ =\lambda^2+2\alpha\frac{1}{T_m}\lambda+(\alpha\frac{1}{T_m})^2\\ \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-7385eb112c8af51a54d93f1ffabef5d1_l3.png)

![Rendered by QuickLaTeX.com \displaystyle{(21)\quad \begin{array}{l} \left[\begin{array}{c} \dot{\hat{\theta}}(t)\\ \dot{\hat{\omega}}(t) \end{array}\right] =\underbrace{ \left[\begin{array}{cc} -\frac{2\alpha-1}{T_m} & 1 \\ -\frac{(\alpha-1)^2}{T_m^2} & -\frac{1}{T_m} \end{array}\right] }_{A-HC} \left[\begin{array}{c} \hat{\theta}(t)\\ \hat{\omega}(t) \end{array}\right] +\underbrace{ \left[\begin{array}{c} 0\\ \frac{1}{K_ET_m} \end{array}\right] }_{B}u(t)\\ + \underbrace{\left[\begin{array}{c} \frac{2\alpha-1}{T_m} \\ \frac{(\alpha-1)^2}{T_m^2} \end{array}\right] }_{H}y(t) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-b514337c82c45e6315198b0db3388da8_l3.png)
図3 状態推定の例

![Rendered by QuickLaTeX.com \displaystyle{(29)\quad \boxed{\left[\begin{array}{c} \dot{x}(t) \\ \dot{e}(t) \end{array}\right]= \underbrace{ \left[\begin{array}{cc} A-BF & -BF \\ 0 & A-HC \end{array}\right] }_{A_{CL}} \left[\begin{array}{c} x(t) \\ e(t) \end{array}\right]} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-8c6ec4764b02f704e5faf2444cdf4250_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(7)\quad \begin{array}{l} A \underbrace{ \left[\begin{array}{cccc} B & AB &\cdots & A^{n-1}B \end{array}\right] }_{T_1^{-1}}\\ = \underbrace{ \left[\begin{array}{cccc} B & AB &\cdots & A^{n-1}B \end{array}\right] }_{T_1^{-1}} \underbrace{ \left[\begin{array}{ccccc} 0 & \cdots & 0 & -a_n \\ 1 & \cdots & 0 & -a_{n-1} \\ \vdots & \ddots & \vdots &\vdots\\ 0 & \cdots & 1 & -a_1 \end{array}\right] }_{A_1} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-0db546a70235247b2e03b1bb4ba933e0_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(8)\quad \boxed{ \begin{array}{l} A_1=T_1AT_1^{-1}= \left[\begin{array}{ccccc} 0 & \cdots & 0 & -a_n \\ 1 & \cdots & 0 & -a_{n-1} \\ \vdots & \ddots & \vdots &\vdots\\ 0 & \cdots & 1 & -a_1 \end{array}\right]\\ B_1=T_1B= \left[\begin{array}{cc} 1 \\ 0\\ \vdots\\ 0 \end{array}\right] \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-c6cf45471e92537f21ce37771de23573_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(9)\quad \begin{array}{l} \underbrace{ \left[\begin{array}{ccccc} 0 & \cdots & 0 & -a_n \\ 1 & \cdots & 0 & -a_{n-1} \\ \vdots & \ddots & \vdots &\vdots\\ 0 & \cdots & 1 & -a_1 \end{array}\right] }_{A_1} \underbrace{ \left[\begin{array}{ccccc} a_{n-1} & a_{n-2} & \cdots & a_1 & 1 \\ a_{n-2} & a_{n-3} & \cdots & 1 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_1 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{array}\right] }_{T_2^{-1}}\\ =\underbrace{ \left[\begin{array}{ccccc} a_{n-1} & a_{n-2} & \cdots & a_1 & 1 \\ a_{n-2} & a_{n-3} & \cdots & 1 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_1 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{array}\right] }_{T_2^{-1}} \underbrace{ \left[\begin{array}{ccccc} 0 & 1 & \cdots & 0\\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1\\ -a_n & -a_{n-1} & \cdots & -a_1 \end{array}\right] }_{A_2} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-5f95461a20f296c7ece2c87fd871f594_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(12)\quad \begin{array}{l} {\rm LHS}=\\ \left[\begin{array}{cc} 0_{1\times n-1} & -a_n \\ I_{n-1\times n-1} & \left[\begin{array}{c} -a_{n-1} \\ \vdots\\ -a_1 \end{array}\right] \end{array}\right] \left[\begin{array}{cccc|c} a_{n-1} & a_{n-2} & \cdots & a_1 & 1 \\ a_{n-2} & a_{n-3} & \cdots & 1 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_1 & 1 & \cdots & 0 & 0 \\\hline 1 & 0 & \cdots & 0 & 0 \end{array}\right]\\ = \left[\begin{array}{cccc|c} -a_n & 0 & \cdots & 0 & 0 \\\hline 0 & a_{n-2} & \cdots & a_1 & 1 \\ 0 & a_{n-3} & \cdots & 1 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-19724dd9a4d938871edbfcd49d9674ac_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(13)\quad \begin{array}{l} {\rm RHS}=\\ \left[\begin{array}{cccc|c} a_{n-1} & a_{n-2} & \cdots & a_1 & 1 \\ a_{n-2} & a_{n-3} & \cdots & 1 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_1 & 1 & \cdots & 0 & 0 \\\hline 1 & 0 & \cdots & 0 & 0 \end{array}\right] \left[\begin{array}{cc} 0_{n-1\times 1} & I_{n-1\times n-1} \\ -a_n & \left[\begin{array}{ccc} -a_{n-1} & \cdots & -a_1 \end{array}\right] \end{array}\right]\\ = \left[\begin{array}{c|cccc} -a_n & 0 & \cdots & 0 & 0 \\ 0 & a_{n-2} & \cdots & a_1 & 1 \\ 0 & a_{n-3} & \cdots & 1 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\\hline 0 & 1 & \cdots & 0 & 0 \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ff97f31f2cbd01f24fdf56d95b63fc41_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(14)\quad \boxed{ \begin{array}{l} A_2=T_2A_1T_2^{-1}= \left[\begin{array}{ccccc} 0 & 1 & \cdots & 0\\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1\\ -a_n & -a_{n-1} & \cdots & -a_1 \end{array}\right]\\ B_2=T_2B_1= \left[\begin{array}{cc} 0 \\ \vdots\\ 0\\ 1 \end{array}\right] \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ce6be79123d0d41f08f5578f356f1fc8_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(17)\quad \begin{array}{l} A= \left[\begin{array}{ccc} 0 & 7 & 4 \\ 1 & -1 & -2\\ 0 & 3 & 1 \end{array}\right],\ B= \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-eb613b4ad7959f598c2311a3efa6522d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(18)\quad \begin{array}{l} {\rm rank} \left[\begin{array}{ccc} B & AB & A^2B \end{array}\right]= {\rm rank}\ \left[\begin{array}{cc|cc|cc} 1 & 0 & 0 & 4 & 7 & -10\\ 0 & 0 & 1 & -2 & -1 & 4\\ 0 & 1 & 0 & 1 & 3 & 5 \end{array}\right]=3 \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-778441ef0b082221824194bd7f62be96_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(22)\quad \begin{array}{l} \underbrace{ \left[\begin{array}{c} 7 \\ -1 \\ 3 \end{array}\right] }_{A^2B_1} = \underbrace{7}_{\alpha_{110}} \underbrace{ \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right] }_{B_1} +\underbrace{(-1)}_{\alpha_{111}} \underbrace{ \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right] }_{AB_1} +\underbrace{3}_{\alpha_{120}} \underbrace{ \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right] }_{B_2} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-a3ced55d0387a8aca744280338c5e6a1_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(23)\quad \begin{array}{l} \underbrace{ \left[\begin{array}{c} 4 \\ -2 \\ 1 \end{array}\right] }_{AB_2} = \underbrace{4}_{\alpha_{210}} \underbrace{ \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right] }_{B_1} +\underbrace{(-2)}_{\beta_{21}} \underbrace{ \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right] }_{AB_1} +\underbrace{1}_{\alpha_{220}} \underbrace{ \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right] }_{B_2} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-c63e0b1e9096a4bd9c5fbf5321eee21e_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(24)\quad \begin{array}{l} A \underbrace{ \left[\begin{array}{ccc} B_1 & AB_1 & B_2 \end{array}\right] }_{T_1^{-1}} =\underbrace{ \left[\begin{array}{ccc} B_1 & AB_1 & B_2 \end{array}\right] }_{T_1^{-1}} \underbrace{ \left[\begin{array}{ccc} 0 & \alpha_{110} & \alpha_{210} \\ 1 & \alpha_{111} & \beta_{21}\\ 0 & \alpha_{120} & \alpha_{220} \end{array}\right] }_{A_1}\\ &&B= \underbrace{ \left[\begin{array}{ccc} B_1 & AB_1 & B_2 \end{array}\right] }_{T_1^{-1}} \underbrace{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right] }_{B_1} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-23bf562ea179dfd172e768b601e987e8_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(25)\quad \begin{array}{l} A_1=T_1AT_1^{-1}= \left[\begin{array}{ccc} 0 & \alpha_{110} & \alpha_{210} \\ 1 & \alpha_{111} & \beta_{21}\\ 0 & \alpha_{120} & \alpha_{220} \end{array}\right] =\left[\begin{array}{ccc} 0 & 7 & 4 \\ 1 & -1 & -2\\ 0 & 3 & 1 \end{array}\right]\\ & B_1=T_1B= \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-88db77c1df02bff109ddfadff44909d0_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(26)\quad \begin{array}{l} &&\underbrace{ \left[\begin{array}{cc|c} 0 & \alpha_{110} & \alpha_{210} \\ 1 & \alpha_{111} & \beta_{21}\\\hline 0 & \alpha_{120} & \alpha_{220} \end{array}\right] }_{A_1} \underbrace{ \left[\begin{array}{cc|c} -\alpha_{111} & 1 & -\beta_{21} \\ 1 & 0 & 0\\\hline 0 & 0 & 1 \end{array}\right] }_{T_2^{-1}}\\ &=\underbrace{ \left[\begin{array}{cc|c} -\alpha_{111} & 1 & -\beta_{21} \\ 1 & 0 & 0\\\hline 0 & 0 & 1 \end{array}\right] }_{T_2^{-1}} \underbrace{ \left[\begin{array}{cc|c} 0 & 1 & 0 \\ \alpha_{110}+\beta_{21}\alpha_{120} & \alpha_{111} & \alpha_{210}+\beta_{21}\alpha_{220}\\\hline \alpha_{120} & 0 & \alpha_{220} \end{array}\right] }_{A_2} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-2373ee4453ef9f5ca62b357ea4f5af85_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(27)\quad \begin{array}{l} \underbrace{ \left[\begin{array}{cc|c} 0 & 7 & 4 \\ 1 & -1 & -2\\\hline 0 & 3 & 1 \end{array}\right] }_{A_1} \underbrace{ \left[\begin{array}{cc|c} 1 & 1 & 2 \\ 1 & 0 & 0\\\hline 0 & 0 & 1 \end{array}\right] }_{T_2^{-1}} =\underbrace{ \left[\begin{array}{cc|c} 1 & 1 & 2 \\ 1 & 0 & 0\\\hline 0 & 0 & 1 \end{array}\right] }_{T_2^{-1}} \underbrace{ \left[\begin{array}{cc|c} 0 & 1 & 0 \\ 1 & -1 & 2\\\hline 3 & 0 & 1 \end{array}\right] }_{A_2} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-81ad23e553d3ac1f2251a084315e5637_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(28)\quad \begin{array}{l} {\rm LHS}= \left[\begin{array}{ccc} 0 & \alpha_{110} & \alpha_{210} \\ 1 & \alpha_{111} & \beta_{21}\\ 0 & \alpha_{120} & \alpha_{220} \end{array}\right] \left[\begin{array}{ccc} -\alpha_{111} & 1 & -\beta_{21} \\ 1 & 0 & 0\\ 0 & 0 & 1 \end{array}\right]\\ &= \left[\begin{array}{ccc} \alpha_{110} & 0 & \alpha_{210} \\ 0 & 1 & 0 \\ \alpha_{120} & 0 & \alpha_{220} \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ff6b2af74632e3a4fd169e0966ea8151_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(29)\quad \begin{array}{l} {\rm RHS}=\\ & \left[\begin{array}{ccc} -\alpha_{111} & 1 & -\beta_{21} \\ 1 & 0 & 0\\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} 0 & 1 & 0 \\ \alpha_{110}+\beta_{21}\alpha_{120} & \alpha_{111} & \alpha_{210}+\beta_{21}\alpha_{220}\\ \alpha_{120} & 0 & \alpha_{220} \end{array}\right]\\ &= \left[\begin{array}{ccc} \alpha_{110} & 0 & \alpha_{210} \\ 0 & 1 & 0 \\ \alpha_{120} & 0 & \alpha_{220} \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-dc856f38b38aa12a6681d314436326e4_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(30)\quad \begin{array}{l} &A_2=T_2A_1T_2^{-1}= \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & -1 & 2\\ 3 & 0 & 1 \end{array}\right]\\ & B_2=T_2B_1= \left[\begin{array}{cc} 0 & 0 \\ 1 & -2 \\ 0 & 1 \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-d09264d70c8d356c3673229affb13c0e_l3.png)

![Rendered by QuickLaTeX.com \displaystyle{(32)\quad \begin{array}{l} &A_0= \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right],\ B_0= \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right]\\ &F_0= \left[\begin{array}{cc|c} \alpha_{110} & \alpha_{111} & \alpha_{210}\\\hline \alpha_{120} & 0 & \alpha_{220} \end{array}\right] = \left[\begin{array}{cc|c} 7 & -1 & 4\\\hline 3 & 0 & 1 \end{array}\right]\\ &&G_0= \left[\begin{array}{cc} 1 & -\beta_{21} \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-f7fac589e781be176791d6411cfa2b6f_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(35)\quad \begin{array}{l} A_2-B_2F_2= \left[\begin{array}{ccc} 0 & 1 & 0 \\ -a_2' & -a_1' & 0\\ 0 & 0 & -a_3' \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-b1fda1f343ed6a79a8ad37d75b7bcfa5_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(40)\quad \begin{array}{l} \alpha_{ij}= \left\{\begin{array}{l} \left[\begin{array}{c} \alpha_{ij0} \\ \vdots \\ \alpha_{ij,n_j-1} \end{array}\right]\ (n_j\le n_i)\\ \left[\begin{array}{c} \alpha_{ij0} \\ \vdots \\ \alpha_{ij,n_i-1}\\ \beta_{ij} \\ 0_{n_j-n_i-1\times 1} \\ \end{array}\right]\ (j<i, n_j>n_i)\\ \left[\begin{array}{c} \alpha_{ij0} \\ \vdots \\ \alpha_{ij,n_i-1}\\ 0 \\ 0_{n_j-n_i-1\times 1} \\ \end{array}\right]\ (j>i, n_j>n_i) \end{array}\right. \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-c23ae84821c038972864db04da0214c9_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(41)\quad \begin{array}{l} A \underbrace{ \left[\begin{array}{c|c|c} B_1\ \cdots\ A^{n_1-1}B_1 & \cdots & B_m\ \cdots\ A^{n_m-1}B_m \end{array}\right] }_{T_1^{-1}}\\ =\underbrace{ \left[\begin{array}{c|c|c} B_1\ \cdots\ A^{n_1-1}B_1 & \cdots & B_m\ \cdots\ A^{n_m-1}B_m \end{array}\right] }_{T_1^{-1}}\\ \times \underbrace{ \left[\begin{array}{c|c|c} \begin{array}{c|c} \begin{array}{c} 0_{1\times n_1-1} \\ I_{n_1-1} \end{array} & \alpha_{11} \end{array} &\cdots & \begin{array}{c|c} 0_{n_1\times n_m-1} & \alpha_{m1} \end{array} \\\hline \vdots & \cdots & \vdots \\\hline \begin{array}{c|c} 0_{n_m\times n_1-1} & \alpha_{1m} \end{array} & \cdots & \begin{array}{c|c} \begin{array}{c} 0_{1\times n_m-1} \\ I_{n_m-1} \end{array} & \alpha_{mm} \end{array} \end{array}\right] }_{A_1}\\ B= \underbrace{ \left[\begin{array}{c|c|c} B_1\ \cdots\ A^{n_1-1}B_1 & \cdots & B_m\ \cdots\ A^{n_m-1}B_m \end{array}\right] }_{T_1^{-1}}\\ \times \underbrace{ \left[\begin{array}{c|c|c} \begin{array}{c} 1 \\ 0_{n_1-1\times1} \end{array} &\cdots & 0_{n_1\times1} \\\hline \vdots & \cdots & \vdots \\\hline 0_{n_m\times1} & \cdots & \begin{array}{c} 1 \\ 0_{n_m-1\times1} \end{array} \end{array}\right] }_{B_1} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ba8411b7aefa63e3beacc9f736d8a5d3_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(42)\quad \boxed{ \begin{array}{l} A_1=T_1AT_1^{-1}= \left[\begin{array}{c|c|c} \begin{array}{c|c} \begin{array}{c} 0_{1\times n_1-1} \\ I_{n_1-1} \end{array} & \alpha_{11} \end{array} &\cdots & \begin{array}{c|c} 0_{n_1\times n_m-1} & \alpha_{m1} \end{array} \\\hline \vdots & \cdots & \vdots \\\hline \begin{array}{c|c} 0_{n_m\times n_1-1} & \alpha_{1m} \end{array} & \cdots & \begin{array}{c|c} \begin{array}{c} 0_{1\times n_m-1} \\ I_{n_m-1} \end{array} & \alpha_{mm} \end{array} \end{array}\right]\\ B_1=T_1B= \left[\begin{array}{c|c|c} \begin{array}{c} 1 \\ 0_{n_1-1\times1} \end{array} &\cdots & 0_{n_1\times1} \\\hline \vdots & \ddots & \vdots \\\hline 0_{n_m\times1} & \cdots & \begin{array}{c} 1 \\ 0_{n_m-1\times1} \end{array} \end{array}\right] \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-8e4adc89f2c6c1dc40584401f4d58d65_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(43)\quad \begin{array}{l} \underbrace{ \left[\begin{array}{c|c|c} \begin{array}{c|c} \begin{array}{c} 0_{1\times n_1-1} \\ I_{n_1-1} \end{array} & \alpha_{11} \end{array} &\cdots & \begin{array}{c|c} 0_{n_1\times n_m-1} & \alpha_{m1} \end{array} \\\hline \vdots & \cdots & \vdots \\\hline \begin{array}{c|c} 0_{n_m\times n_1-1} & \alpha_{1m} \end{array} & \cdots & \begin{array}{c|c} \begin{array}{c} 0_{1\times n_m-1} \\ I_{n_m-1} \end{array} & \alpha_{mm} \end{array} \end{array}\right] }_{A_1}\\ \times \underbrace{ \left[\begin{array}{ccc} L_{11} & \cdots & L_{m1} \\ \vdots & \cdots & \vdots \\ L_{1m} & \cdots & L_{mm} \end{array}\right] }_{T_2^{-1}} =\underbrace{ \left[\begin{array}{ccc} L_{11} & \cdots & L_{m1} \\ \vdots & \cdots & \vdots \\ L_{1m} & \cdots & L_{mm} \end{array}\right] }_{T_2^{-1}} \underbrace{ (A_0+B_0G_0^{-1}F_0) }_{A_2} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-4fd1e3c6e397b538020d3db0dace632d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(44)\quad \begin{array}{l} L_{ii}=-\left[\begin{array}{ccc} S_{n_i}\alpha_{ii} & \cdots & S_{n_i}^{n_i}\alpha_{ii} \end{array}\right]+J_{n_1}\\ L_{ij}=-\left[\begin{array}{ccc} S_{n_j}\alpha_{ij} & \cdots & S_{n_j}^{n_i}\alpha_{ij} \end{array}\right]\\ S_\nu= \left[\begin{array}{cc} 0_{\nu-1\times 1} & I_{\nu-1}\\ 0 & 0_{1\times\nu-1} \end{array}\right] \\ J_\nu= \left[\begin{array}{ccc} 0 & \cdots & 1 \\ \vdots & \cdot & \vdots \\ 1 & \cdots & 0 \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-2e418066db7cccbf51e4cc7658f79c17_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(45)\quad \begin{array}{l} A_0= \left[\begin{array}{c|c|c} S_{n_1} & \cdots & 0_{n_1\times n_m} \\\hline \vdots & \ddots & \vdots \\\hline 0_{n_m\times n_1} & \cdots & S_{n_m} \end{array}\right]\\ B_0= \left[\begin{array}{c|c|c} \begin{array}{c} 0_{n_1-1\times 1} \\ 1 \end{array} & \cdots & 0_{n_1\times1} \\\hline \vdots & \ddots & \vdots \\\hline 0_{n_m\times1} & \cdots & \begin{array}{c} 0_{n_m-1\times 1} \\ 1 \end{array} \end{array}\right]\\ F_0= \left[\begin{array}{ccc|c|ccc} \bar\alpha_{110} & \cdots & \bar\alpha_{11,n_1-1} & \cdots & \bar\alpha_{m10} & \cdots & \bar\alpha_{m1,n_m-1}\\ \vdots & \cdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ \bar\alpha_{1m0} & \cdots & \bar\alpha_{1m,n_1-1} & \cdots & \bar\alpha_{mm0} & \cdots & \bar\alpha_{mm,n_m-1}\\ \end{array}\right]\\ \bar\alpha_{ijk}= \left\{\begin{array}{ll} \alpha_{ijk} & (k\verb|<| n_j)\\ 0 & (k\ge n_j)\end{array}\right.\\ G_0=\left[\begin{array}{cccl} 1&\bar\beta_{21}&\cdots&\bar\beta_{m1}\\ 0&1&\ddots&\vdots\\ \vdots&\ddots&\ddots&\bar\beta_{m,m-1}\\ 0&0&\cdots&1\end{array}\right]\\ \bar\beta_{ij}=\left\{\begin{array}{ll} -\beta_{ij} &(n_j\ge n_i)\\ 0 &(n_j\verb|<|n_i) \end{array}\right. \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-32b1c40783488872664cb189555fb1d7_l3.png)


![Rendered by QuickLaTeX.com \displaystyle{(10)\quad \begin{array}{ll} {\rm rank}\, [\begin{array}{cccc} \underbrace{TB}_{B'} & \underbrace{TAT^{-1}}_{A'}\underbrace{TB}_{B'} & \cdots & \underbrace{(TAT^{-1})^{n-1}}_{A'^{n-1}}\underbrace{TB}_{B'} \end{array}] \\ ={\rm rank}\, T[\begin{array}{cccc} B & AB &\cdots & A^{n-1}B \end{array}]\\ ={\rm rank}\, [\begin{array}{cccc} B & AB &\cdots & A^{n-1}B \end{array}] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-608b923e2c31088baa89055db8bbcf5f_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(11)\quad \boxed{ \left[\begin{array}{c} \dot{x}_1'(t) \\ \dot{x}_2'(t) \end{array}\right] = \underbrace{ \left[\begin{array}{cc} A_{\#} & X \\ 0 & A_k \end{array}\right] }_{TAT^{-1}} \left[\begin{array}{c} x_1'(t) \\ x_2'(t) \end{array}\right] + \underbrace{ \left[\begin{array}{c} B_{\#} \\ 0 \end{array}\right] }_{TB} u(t)} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-d045d7f6e58128cfb562afcad80f28e6_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(12)\quad \left[\begin{array}{cc} T^TB & T^TAT \end{array}\right]= \left[\begin{array}{c|cccc|c} B_1 & A_1 & X & \cdots & X & X \\ 0 & B_2 & A_2 & \cdots & X & X \\ \vdots & & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & B_{k-1} & A_{k-1} & X \\ \hline 0 & 0 & \cdots & 0 & B_k & A_k \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-2b8e62783604bcf64eef31f4d8a42b0b_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(17)\quad \left[\begin{array}{c|cccc|c} B_1 & A_1-\lambda I_{m_1} & X & \cdots & X & X \\ 0 & B_2 & A_2-\lambda I_{m_2} & \cdots & X & X \\ \vdots & & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & B_{k-1} & A_{k-1}-\lambda I_{m_{k-1}} & X \\ \hline 0 & 0 & \cdots & 0 & B_k & A_k-\lambda I_{m_k} \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-07d18a8741d94acb1d81ddaf19f9a337_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(2)\quad \Sigma^{(j)}= \left[\begin{array}{cc} \Sigma_1^{(j)} & 0 \\ 0 & 0 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-a79928b336591d941023ec661933d6ad_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(6)\quad A= \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{array}\right] ,\ B= \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-474bab461a7a10da1d3931fc1fae01df_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(7)\quad B^{(1)}= \underbrace{ \left[\begin{array}{ccc} 0 & 1 & 1 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{array}\right] }_{U^{(1)}} \underbrace{ \left[\begin{array}{cc} \sqrt{2} & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right] }_{\Sigma^{(1)}} \underbrace{ \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right]^T }_{V^{(1)T}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-46fba17a52676c6d9cace3cfbf263ce8_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(8)\quad A^{(2)}= \left[\begin{array}{cc|c} 0 & 0 & 1 \\ 0 & 0 & 0 \\ \hline 0 & 0 & -1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-1562ebd0e8d3441e17c801dd71458311_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(9)\quad \begin{array}{l} \left[\begin{array}{cc} T^TB & T^TAT \end{array}\right]= \left[\begin{array}{ccc} B_1 & A_1 & X \\ 0 & B_2 & A_2 \end{array}\right]= \left[\begin{array}{cc|cc|c} 0 & \sqrt{2} & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & -1 \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-f8026f4008095d9ddb2549a401bee577_l3.png)

