●
![Rendered by QuickLaTeX.com \displaystyle{ \left[\begin{array}{cc|cc} M_{qq}+M_{qq}^a & M_{qp} & 0 & 0\\ M_{pq} & M_{pp}+M_{pp}^b & 0 & 0\\\hline -c_0 I_N & 0 & I_N & 0\\ 0 & -d_0 I_N & 0 & I_N \end{array}\right] \left[\begin{array}{c} \ddot{q} \\ \ddot{p} \\\hline \ddot{q}_a \\ \ddot{p}_b \end{array}\right]}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-da29b61b58b682d19c3dc1f222b03cc6_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{+\left[\begin{array}{cc|cc} D_{qq}+D_{qq}^a & D_{qp} & 0 & 0\\ D_{pq} & D_{pp}+D_{qq}^b & 0 & 0\\\hline 0 & 0 & {\cal D}_{qq}^a & 0 \\ 0 & 0 & 0 & {\cal D}_{pp}^b \end{array}\right] \left[\begin{array}{c} \dot{q} \\ \dot{p} \\\hline \dot{q}_a \\ \dot{p}_b \end{array}\right]}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-67aa206323acba4f60e32f70d9550e82_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{ +\left[\begin{array}{cc|cc} K_{qq} & 0 & -K_{q_aq_a} & -K_{q_ap_b} \\ 0 & K_{pp} & -K_{p_bq_a} & -K_{p_bp_b} \\\hline 0 & 0 & c_2 I_N & 0\\ 0 & 0 & 0 & d_2 I_N \end{array}\right] \left[ \begin{array}{c} q \\ p \\\hline q_a \\ p_b \end{array} \right] = \left[\begin{array}{c} f_1 \\ 0 \\\hline 0\\ 0 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-9801e10e2c79389674c4ce064923e0b3_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{M_{qq}+M_{qq}^a=[m^y_{ij} + \displaystyle\sum_{l,k=1}^NF^y_{ilkj}q_lq_k]_{i,j=1,\cdots,N}+\chi_2I_N}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-484a4ed46e0dafeb473af331951ae59d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{M_{qp}=[\displaystyle\sum_{l,k=1}^N N^y_{ilkj} q_l p_k]_{i,j=1,\cdots,N}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-6750ab8db4c9541c92856c4cc319e034_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{M_{pq}=[\displaystyle\sum_{l,k=1}^N N^z_{ilkj} p_l q_k]_{i,j=1,\cdots,N}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-d1be65df645506de42be0ba230166dae_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{M_{pp}+M_{qq}^b=[m^z_{ij} + \displaystyle\sum_{l,k=1}^NF^z_{ilkj}p_lp_k]_{i,j=1,\cdots,N}+\chi_2I_N}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-af087419a1c72dbe9294f4bb04b782fc_l3.png)
for i=1:N, for j=1:N
Mqq(i,j)=m_y(i,j);
Mqp(i,j)=0;
Mpq(i,j)=0;
Mpp(i,j)=m_z(i,j);
for l=1:N, for k=1:N
Mqq(i,j)=Mqq(i,j)+F_y(i,l,k,j)*q(l)*q(k);
Mqp(i,j)=Mqp(i,j)+N_y(i,l,k,j)*q(l)*p(k);
Mpq(i,j)=Mpq(i,j)+N_z(i,l,k,j)*p(l)*q(k);
Mpp(i,j)=Mpp(i,j)+F_z(i,l,k,j)*p(l)*p(k);
end, end, end, end
MM=eye(4*N,4*N);
MM(1:2*N,1:2*N)=[Mqq+chi2*eye(N,N) Mqp;Mpq Mpp+chi2*eye(N,N)];
MM(2*N+1:3*N,1:N)=-c_0*eye(N,N);
MM(3*N+1:4*N,N+1:2*N)=-d_0*eye(N,N);
![Rendered by QuickLaTeX.com \displaystyle{D_{qq}+D_{qq}^a=[c^y_{ij} +\chi_3\sum_{j=1}^N\int_0^1|v-\dot{\eta}|\phi_i\phi_jd\xi + \displaystyle\sum_{l,k=1}^ND^y_{ilkj}q_lq_k+ \sum_{l,k=1}^NE^y_{ilkj}q_l\dot{q}_k]_{i,j=1,\cdots,N}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-56c77e9f02100bf1edad77915dfeee0c_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{D_{qp}=[\displaystyle\sum_{l,k=1}^NL^y_{ilkj}q_lp_k+\displaystyle\sum_{l,k=1}^NM^y_{ilkj}q_l\dot{p}_k]_{i,j=1,\cdots,N}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-f6f94a2bdaf292ff0093f65bc300008d_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{D_{pq}=[\displaystyle\sum_{l,k=1}^NL^z_{ilkj}p_lq_k+\displaystyle\sum_{l,k=1}^NM^z_{ilkj}p_l\dot{q}_k]_{i,j=1,\cdots,N} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-8ba846dda9b4e1a20fd16e8372ee42dc_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{D_{pp}+D_{qq}^b=[c^z_{ij} +\chi_3\sum_{j=1}^N\int_0^1|\dot{\eta}|\psi_i\psi_jd\xi + \displaystyle\sum_{l,k=1}^ND^z_{ilkj}p_lp_k+ \displaystyle\sum_{l,k=1}^NE^z_{ilkj}p_l\dot{p}_k]_{i,j=1,\cdots,N} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-4163534d68aaad1e5c97399979488237_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{{\cal D}_{qq}^a=[c_1\displaystyle\sum_{l,k=1}^NS^y_{ijkl}q_{ak}q_{al}]_{i,j=1,\cdots,N}-c_1I_N}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-43ce9264c264e937f29b5242717b7b5c_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{{\cal D}_{pp}^b=[d_1\displaystyle\sum_{l,k=1}^NS^z_{ijkl}p_{bk}p_{bl}]_{i,j=1,\cdots,N}-d_1I_N}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-d57a70fb955339e4d56e602a8eb94956_l3.png)
for i=1:N, for j=1:N
Dqq(i,j)=c_y(i,j)+chi3*c_simp*(abs(V-dy).*f_y(:,i).*f_y(:,j));
Dqp(i,j)=0;
Dpq(i,j)=0;
Dpp(i,j)=c_z(i,j)+chi3*c_simp*(abs(dy).*f_z(:,i).*f_z(:,j));
Dqqa(i,j)=0;
Dppb(i,j)=0;
for l=1:N, for k=1:N
Dqq(i,j)=Dqq(i,j)+D_y(i,l,k,j)*q(l)*q(k)+E_y(i,l,k,j)*q(l)*dq(k);
Dqp(i,j)=Dqp(i,j)+L_y(i,l,k,j)*q(l)*p(k)+M_y(i,l,k,j)*q(l)*dp(k);
Dpq(i,j)=Dpq(i,j)+L_z(i,l,k,j)*p(l)*q(k)+M_z(i,l,k,j)*p(l)*dq(k);
Dpp(i,j)=Dpp(i,j)+D_z(i,l,k,j)*p(l)*p(k)+E_z(i,l,k,j)*p(l)*dp(k);
Dqqa(i,j)=Dqqa(i,j)+c_1*S_y(i,j,k,l)*qa(k)*qa(l);
Dppb(i,j)=Dppb(i,j)+d_1*S_z(i,j,k,l)*pb(k)*pb(l);
end, end, end, end
DD=eye(4*N,4*N);
DD(1:2*N,1:2*N)=[Dqq Dqp;Dpq Dpp];
DD(2*N+1:3*N,2*N+1:3*N)=Dqqa-c_1*eye(N,N);
DD(3*N+1:4*N,3*N+1:4*N)=Dppb-d_1*eye(N,N);
![Rendered by QuickLaTeX.com \displaystyle{K_{qq}=[k^y_{ij} + \displaystyle\sum_{l,k=1}^NB^y_{ilkj}q_kq_l+ \displaystyle\sum_{l,k=1}^NH^y_{ilkj}p_kp_l]_{i,j=1,\cdots,N}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-040d1c3fd7a13639a6bdd6969cb3e672_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{K_{pp}=[k^z_{ij} + \displaystyle\sum_{l,k=1}^NB^z_{ilkj}p_kp_l+ \displaystyle\sum_{l,k=1}^NH^z_{ilkj}q_kq_l]_{i,j=1,\cdots,N}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ef8cb395af4a7622a53810a8bebb9a74_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{K_{q_aq_a}=[\chi_4 \displaystyle\sum_{l,k=1}^NS^y_{ijkl}q_{vk}q_{vl}]_{i,j=1,\cdots,N}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-80451502f16041f0bbac06fddc8c23c5_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{K_{q_ap_b}=[-\chi_5 \displaystyle\sum_{l,k=1}^NS^y_{ijkl}q_{vk}\dot{q}_{l}]_{i,j=1,\cdots,N}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-98e603dd8e3c36879741d03b57b38686_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{K_{p_bq_a}=[\chi_4 \displaystyle\sum_{l,k=1}^NS^z_{ijkl}p_{vk}p_{vl}]_{i,j=1,\cdots,N}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-4205b24c7abafe265267f45c15fd55e5_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{K_{p_bp_b}=[\chi_5 \displaystyle\sum_{l,k=1}^NS^z_{ijkl}p_{vk}\dot{p}_{l}]_{i,j=1,\cdots,N}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-62eb249d80c1f756ba7c6165efddfe27_l3.png)
for i=1:N, for j=1:N
Kqq(i,j)=k_y(i,j);
Kpp(i,j)=k_z(i,j);
Kqqa(i,j)=0;
Kqpa(i,j)=0;
Kpqb(i,j)=0;
Kppb(i,j)=0;
for l=1:N, for k=1:N
Kqq(i,j)=Kqq(i,j)+B_y(i,l,k,j)*q(l)*q(k)+H_y(i,l,k,j)*p(l)*p(k);
Kpp(i,j)=Kpp(i,j)+B_z(i,l,k,j)*p(l)*p(k)+H_z(i,l,k,j)*q(l)*q(k);
Kqqa(i,j)=Kqqa(i,j)+chi4*S_y(i,j,k,l)*q(k)*q(l);
Kqpa(i,j)=Kqpa(i,j)-chi5*S_y(i,j,k,l)*q(k)*dp(l);
Kpqb(i,j)=Kpqb(i,j)+chi4*S_z(i,j,k,l)*p(k)*p(l);
Kppb(i,j)=Kppb(i,j)+chi5*S_z(i,j,k,l)*p(k)*dp(l);
end, end, end, end
KK=eye(4*N,4*N);
KK(1:N,1:N)=Kqq;
KK(N+1:2*N,N+1:2*N)=Kpp;
KK(1:2*N,2*N+1:4*N)=-[Kqqa Kqpa;Kpqb Kppb];
KK(2*N+1:3*N,2*N+1:3*N)=c_2*eye(N,N);
KK(3*N+1:4*N,3*N+1:4*N)=d_2*eye(N,N);
![Rendered by QuickLaTeX.com \displaystyle{f_1=[\chi_3\int_0^1|v-\dot{\eta}|\phi_iv_id\xi]_{i=1,\cdots,N}}](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ddec26b5108e035cb562ffca33c0755b_l3.png)
f1=zeros(N,1);
for i=1:N
f1(i)=chi3*c_simp*(abs(V-dy).*f_y(:,i).*V);
end
●for 


for i=1:N, for j=1:N
m_y(i,j)=c_simp*(f_y(:,i).*f_y(:,j))+G_m*f_y(n_d+1,i)*df_y(n_d+1,j);
end, end
m_z=m_y;




for i=1:N, for j=1:N, for k=1:N, for l=1:N
E_y(i,j,k,l)=c_simp*(f_y(:,i).*df_y(:,j).*(simp_u*(df_y(:,k).*df_y(:,l))))…
+G_m*f_y(n_d+1,i)*df_y(n_d+1,j)*c_simp*(df_y(:,k).*df_y(:,l))…
-c_simp*(f_y(:,i).*ddf_y(:,j).*(simp_b*(simp_u*(df_y(:,k).*df_y(:,l)))))…
-G_m*c_simp*(f_y(:,i).*ddf_y(:,j).*(simp_u*(df_y(:,k).*df_y(:,l))));
end, end, end, end
E_z=E_y;




for i=1:N, for j=1:N, for k=1:N, for l=1:N
F_y(i,j,k,l)=E_y(i,j,k,l);
end, end, end, end
F_z=F_y;




for i=1:N, for j=1:N, for k=1:N, for l=1:N
M_y(i,j,k,l)=c_simp*(f_y(:,i).*df_y(:,j).*(simp_u*(df_z(:,k).*df_z(:,l))))…
+G_m*f_y(n_d+1,i)*df_y(n_d+1,j)*c_simp*(df_z(:,k).*df_z(:,l))…
-c_simp*(f_y(:,i).*ddf_y(:,j).*(simp_b*(simp_u*(df_z(:,k).*df_z(:,l)))))…
-G_m*c_simp*(f_y(:,i).*ddf_y(:,j).*(simp_u*(df_z(:,k).*df_z(:,l))));
end, end, end, end
M_z=M_y;






for i=1:N, for j=1:N, for k=1:N, for l=1:N
N_y(i,j,k,l)=c_simp*(f_y(:,i).*df_y(:,j).*(simp_u*(df_z(:,k).*df_z(:,l))))…
+G_m*f_y(n_d+1,i)*df_y(n_d+1,j)*c_simp*(df_z(:,k).*df_z(:,l))…
-c_simp*(f_y(:,i).*ddf_y(:,j).*(simp_b*(simp_u*(df_z(:,k).*df_z(:,l)))))…
-G_m*c_simp*(f_y(:,i).*ddf_y(:,j).*(simp_u*(df_z(:,k).*df_z(:,l))))…
+c_simp*(f_y(:,i).*ddf_y(:,j).*ddf_z(:,k).*ddf_z(:,l)…
+f_y(:,i).*ddf_y(:,j).*df_z(:,k).*dddf_z(:,l)…
+3*f_y(:,i).*df_y(:,j) .*ddf_z(:,k).*dddf_z(:,l)…
+f_y(:,i).*df_y(:,j) .*df_y(:,k).*ddddf_y(:,l));
end, end, end, end
N_z=N_y;


for i=1:N, for j=1:N, for k=1:N, for l=1:N
S_y(i,j,k,l)=c_simp*(f_y(:,i).*f_y(:,j).*f_y(:,k).*f_y(:,l));
end, end, end, end
S_z=S_y;


for i=1:N, for j=1:N
c_y(i,j)=2*sqrt(beta)*c_simp*(U.*f_y(:,i).*df_y(:,j));
end, end
c_z=c_y;




for i=1:N, for j=1:N
k_y_0(i,j)=c_simp*(gamma*f_y(:,i).*df_y(:,j))+gamma*G_p*f_y(n_d+1,i).*df_y(n_d+1,j)…
-c_simp*(gamma*(1-xi+G_p))+c_simp*(f_y(:,i).*ddddf_y(:,j));
end, end
for i=1:N, for j=1:N
k_y(i,j)= k_y_0(i,j)+sqrt(beta)*c_simp*(dU.*(1-xi).*f_y(:,i).*ddf_y(:,j))…
+c_simp*(U.^2.*f_y(:,i).*ddf_y(:,j));
end, end
k_z=k_y;








for i=1:N, for j=1:N, for k=1:N, for l=1:N
B_y_0(i,j,k,l)=1/2*gamma*c_simp*(f_y(:,i).*df_y(:,j).*df_y(:,k).*df_y(:,l))…
+1/2*gamma*G_p*f_y(n_d+1,i).*df_y(n_d+1,j).*df_y(n_d+1,k).*df_y(n_d+1,l)…
-3/2*c_simp*(gamma*(1-xi+G_p))…
+c_simp*(f_y(:,i).*ddf_y(:,j).*ddf_y(:,k).*ddf_y(:,l)…
+4*f_y(:,i).*df_y(:,j) .*ddf_y(:,k).*dddf_y(:,l)…
+f_y(:,i).*ddf_y(:,j).*ddf_y(:,k).*ddddf_y(:,l));
end, end, end, end
for i=1:N, for j=1:N, for k=1:N, for l=1:N
B_y(i,j,k,l)= B_y_0(i,j,k,l)…
+3/2*sqrt(beta)*c_simp*(dU.*(1-xi).*f_y(:,i).*ddf_y(:,j).*df_y(:,k).*df_y(:,l))…
+sqrt(beta)*c_simp*(dU.*f_y(:,i).*ddf_y(:,j).*(simp_b*(df_y(:,k).*df_y(:,l))))…
+c_simp*(U.^2.*(f_y(:,i).*df_y(:,j).*df_y(:,k).*ddf_y(:,l)…
-f_y(:,i).*ddf_y(:,j).*(simp_b*(df_y(:,k).*ddf_y(:,l)))));
end, end, end, end
B_z=B_y;








for i=1:N, for j=1:N, for k=1:N, for l=1:N
H_y_0(i,j,k,l)=1/2*gamma*c_simp*(f_y(:,i).*df_y(:,j).*df_y(:,k).*df_y(:,l))…
+1/2*gamma*G_p*f_y(n_d+1,i).*df_y(n_d+1,j).*df_y(n_d+1,k).*df_y(n_d+1,l)…
-1/2*c_simp*(gamma*(1-xi+G_p).*f_y(:,i).*ddf_y(:,j).*df_y(:,k).*df_y(:,l))…
-c_simp*(gamma*(1-xi+G_p).*f_y(:,i).*df_y(:,j).*df_z(:,k).*ddf_z(:,l));
end, end, end, end
for i=1:N, for j=1:N, for k=1:N, for l=1:N
H_y(i,j,k,l)= H_y_0(i,j,k,l)…
+1/2*sqrt(beta)*c_simp*(dU.*(1-xi).*f_y(:,i).*ddf_y(:,j).*df_y(:,k).*df_y(:,l)…
+sqrt(beta)*(1-xi).*f_y(:,i).*df_y(:,j).*df_z(:,k).*ddf_z(:,l)…
+sqrt(beta)*f_y(:,i).*ddf_y(:,j).*(simp_b*(df_z(:,k).*df_z(:,l))))…
+c_simp*(U.^2.*(f_y(:,i).*df_y(:,j).*df_z(:,k).*ddf_z(:,l)…
-f_y(:,i).*ddf_y(:,j).*(simp_b*(df_y(:,k).*ddf_y(:,l)))));
end, end, end, end
H_z=H_y;


for i=1:N, for j=1:N, for k=1:N, for l=1:N
D_y(i,j,k,l)=2*sqrt(beta)*c_simp*(U.*(f_y(:,i).*df_y(:,j).*df_y(:,k).*df_y(:,l)…
-f_y(:,i).*ddf_y(:,j).*(simp_b*(df_y(:,k).*df_y(:,l)))));
end, end, end, end
D_z=D_y;


for i=1:N, for j=1:N, for k=1:N, for l=1:N
L_y(i,j,k,l)=2*sqrt(beta)*c_simp*(U.*(f_y(:,i).*df_y(:,j).*df_z(:,k).*df_z(:,l)…
-f_y(:,i).*ddf_y(:,j).*(simp_b*(df_z(:,k).*df_z(:,l)))));
end, end, end, end
L_z=L_y;