補償器によるSM制御…Homework
[1] 制御対象
![Rendered by QuickLaTeX.com \displaystyle{(1)\quad \begin{array}{l} \dot{x}(t)=Ax(t)+Bu(t)+B\xi(t,x,u)\\ y(t)=Cx(t)\\ (x(t)\in{\rm\bf R}^n, u(t)\in{\rm\bf R}^m, y(t)\in{\rm\bf R}^p) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-dd1400ba229b87c3725057ea70c128ee_l3.png)
に対するSM制御則の線形制御部を、補償器
![Rendered by QuickLaTeX.com \displaystyle{(2)\quad \boxed{\dot{x}_c(t)=Hx_c(t)+Dy(t)}\quad(x_c(t)\in{\rm\bf R}^q) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-de1f7c4e1488a11a55040f5ac2a62c36_l3.png)
を用いて実現することを考えます。このときのスイッチング関数を
![Rendered by QuickLaTeX.com \displaystyle{(3)\quad \boxed{s(t)=F_cx_c(t)+Fy(t)}\quad(s(t)\in{\rm\bf R}^m) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-0c43d6195b80f111780927494bf60ca1_l3.png)
とします。
●出力FB型SM制御(p>m)の議論により、次のSM標準形を得ているものとします。
![Rendered by QuickLaTeX.com \displaystyle{(18.1^*)\quad \begin{array}{l} \underbrace{ \left[\begin{array}{c} \dot x'''_1(t)\\ \dot x'''_2(t) \end{array}\right] }_{\dot{x}'''(t)} = \underbrace{ \left[\begin{array}{ccc|c} A_{11}^o & A_{12}^o & A_{121}^m & A_{121}\\ 0_{n-p-r\times r} & A_{22}^o & A_{122}^m & A_{1221}\\ 0_{p-m\times r} & A_{21}^o & A_{22}^m & A_{1222}\\\hline A_{2120} & A_{2121} & A_{2122} & A_{22} \end{array}\right] }_{(T_aT_bT_c)A(T_aT_bT_c)^{-1}} \underbrace{ \left[\begin{array}{c} x'''_1(t)\\ x'''_2(t) \end{array}\right] }_{x'''(t)}\\ + \underbrace{ \left[\begin{array}{c} 0_{r\times m} \\ 0_{n-p-r\times m} \\ 0_{p-m\times m} \\\hline B_2 \end{array}\right] }_ {(T_aT_bT_c)B} \underbrace{(u(t)+\xi(t,x,u))}_{u'(t)}\\ (A_{11}^o\in{\rm\bf R}^{r\times r},A_{22}^o\in{\rm\bf R}^{n-p-r\times n-p-r},A_{22}^m\in{\rm\bf R}^{p-m\times p-m},A_{22}\in{\rm\bf R}^{m\times m}) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-712c9ee206bbfdfc0320ee7fb2c01281_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(18.2^*)\quad \begin{array}{l} y(t) = \underbrace{ \left[\begin{array}{cc} 0_{p\times n-p} & T \\ \end{array}\right] }_{C(T_aT_bT_c)^{-1}} \underbrace{ \left[\begin{array}{c} x'''_1(t)\\ x'''_2(t) \end{array}\right] }_{x'''(t)} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-c2d502c3e8c7b30de092731cc5418e3d_l3.png)
このとき、
とおくと
![Rendered by QuickLaTeX.com \displaystyle{(2')\quad \begin{array}{l} \dot{x}_c(t)=Hx_c(t)+Dy(t)\\ =Hx_c(t)+ \left[\begin{array}{cc} 0_{p\times n-p} & DT \\ \end{array}\right] %\underbrace{ \left[\begin{array}{c} x'''_1(t)\\ x'''_2(t) \end{array}\right] %}_{x'''(t)} \\ =Hx_c(t)+ \left[\begin{array}{cc} D_1C_1 & D_2 \\ \end{array}\right] %\underbrace{ \left[\begin{array}{c} x'''_1(t)\\ x'''_2(t) \end{array}\right] %}_{x'''(t)} \\ =Hx_c(t)+D_1C_1x'''_1(t)+D_2x'''_2(t)\\ (DT=\left[\begin{array}{cc} D_1 & D_2 \end{array}\right], D_1\in{\rm\bf R}^{m\times p-m}, D_2\in{\rm\bf R}^{m\times m}) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-9c519f23b2642a1398b44d297648888d_l3.png)
および
![Rendered by QuickLaTeX.com \displaystyle{(3')\quad \begin{array}{l} s(t)=F_cx_c(t)+Fy(t)\\ =Hx_c(t)+ \left[\begin{array}{cc} 0_{p\times n-p} & FT \\ \end{array}\right] %\underbrace{ \left[\begin{array}{c} x'''_1(t)\\ x'''_2(t) \end{array}\right] %}_{x'''(t)} \\ =Hx_c(t)+ \left[\begin{array}{cc} F_1C_1 & F_2 \\ \end{array}\right] %\underbrace{ \left[\begin{array}{c} x'''_1(t)\\ x'''_2(t) \end{array}\right] %}_{x'''(t)} \\ =Hx_c(t)+F_1C_1x'''_1(t)+F_2x'''_2(t)\\ (FT=\left[\begin{array}{cc} F_1 & F_2 \end{array}\right], F_1\in{\rm\bf R}^{m\times p-m}, F_2\in{\rm\bf R}^{m\times m}) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-c3a63f48d662d8ce45ee20bfb786b893_l3.png)
●(18.1
)と(2′)を結合し、
を用いて、次式を得ます。
![Rendered by QuickLaTeX.com \displaystyle{(4)\quad \begin{array}{l} \underbrace{ \left[\begin{array}{c} \dot x'''_1(t)\\\hline \dot x'''_2(t)\\\hline\hline \dot x_c(t) \end{array}\right] }_{\dot{x}'''(t)} = \left[\begin{array}{c|c||c} \left.\begin{array}{ccc} A_{11}^o & A_{12}^o & A_{121}^m \\ 0_{n-p-r\times r} & A_{22}^o & A_{122}^m \\ 0_{p-m\times r} & A_{21}^o & A_{22}^m \\ \end{array}\right.& \left.\begin{array}{cc} A_{121}\\ A_{1221}\\ A_{1222} \end{array}\right.& \left.\begin{array}{cc} 0_{r\times q} \\ 0_{n-p-r\times q} \\ 0_{p-m\times q} \end{array}\right. \\\hline \left.\begin{array}{ccc} A_{211} & A_{2121} &A_{2122} \end{array}\right.& \left.\begin{array}{cc} A_{22} \end{array}\right.& 0_{m\times q} \\\hline\hline %D_1C_1 \left.\begin{array}{cc} 0_{q\times r} & D_1\tilde{C}_1 \end{array}\right. & D_2 & H \end{array}\right]\\ \times \underbrace{ \left[\begin{array}{c} x'''_1(t)\\\hline x'''_2(t)\\\hline\hline x_c(t) \end{array}\right] }_{x'''(t)} + \left[\begin{array}{c} 0_{r\times m} \\ 0_{n-p-r\times m} \\ 0_{p-m\times m} \\\hline B_2\\\hline\hline 0_{q\times m} \end{array}\right] u'(t) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-1968121e3a5d1a000f172ea9ce55a016_l3.png)
と
を入れ替えて
![Rendered by QuickLaTeX.com \displaystyle{(5)\quad \begin{array}{l} \underbrace{ \left[\begin{array}{c} \dot x'''_1(t)\\\hline \dot x_c(t)\\\hline\hline \dot x'''_2(t) \end{array}\right] }_{\dot{x}'''(t)} = \left[\begin{array}{c|c||c} \left.\begin{array}{ccc} A_{11}^o & A_{12}^o & A_{121}^m \\ 0_{n-p-r\times r} & A_{22}^o & A_{122}^m \\ 0_{p-m\times r} & A_{21}^o & A_{22}^m \\ \end{array}\right.& \left.\begin{array}{cc} 0_{r\times q} \\ 0_{n-p-r\times q} \\ 0_{p-m\times q} \end{array}\right. & \left.\begin{array}{cc} A_{121}\\ A_{1221}\\ A_{1222} \end{array}\right. \\\hline %D_1C_1 \left.\begin{array}{ccc} 0_{q\times r} & D_1\tilde{C}_1 \end{array}\right. & \left.\begin{array}{cc} H \end{array}\right. & D_2 \\\hline\hline \left.\begin{array}{ccc} A_{211} & A_{2121} &A_{2122} \end{array}\right. & 0_{m\times q} & A_{22} \end{array}\right]\\ \times \underbrace{ \left[\begin{array}{c} x'''_1(t)\\\hline x_c(t)\\\hline\hline x'''_2(t) \end{array}\right] }_{x'''(t)} + \left[\begin{array}{c} 0_{r\times m} \\ 0_{n-p-r\times m} \\ 0_{p-m\times m} \\\hline 0_{q\times m}\\\hline\hline B_2\\ \end{array}\right] u'(t) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-954b2e74e37e5828afcfbe39a920d5cb_l3.png)
ここで、
を
、
、
に分割し、座標変換
![Rendered by QuickLaTeX.com \displaystyle{(6)\quad \begin{array}{l} \underbrace{ \left[\begin{array}{c} x'''_r(t)\\ x'''_{11}(t)\\ x'''_{12}(t)\\\hline x_c(t)\\\hline\hline x''''_2(t)\\ \end{array}\right] }_{x''''(t)} = \underbrace{ \left[\begin{array}{ccc|c||c} I_{r} & 0 & 0 & 0& 0 \\ 0 & I_{n-p-r} & 0 & 0& 0 \\ 0 & 0 & I_{p-m} & 0 & 0\\\hline 0 & 0 & 0 & I_q &0 \\\hline\hline 0 & 0 & K & K_c & I_m \end{array}\right] }_{T_s} \underbrace{ \left[\begin{array}{c} x'''_r(t)\\ x'''_{11}(t)\\ x'''_{12}(t)\\\hline x_c(t)\\\hline\hline x'''_2(t)\\ \end{array}\right] }_{x'''(t)}\\ (K=F_2^{-1}F_1, K_c=F_2^{-1}F_c) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-bb2718c0970f9bbdf8747a901f89c9ab_l3.png)
を行って、次式を得ます。
![Rendered by QuickLaTeX.com \displaystyle{(7)\quad \begin{array}{l} \underbrace{ \left[\begin{array}{c} \dot x'''_r(t)\\ \dot x'''_{11}(t)\\ \dot x'''_{12}(t)\\\hline \dot x_c(t)\\\hline \dot x''''_2(t) \end{array}\right] }_{\dot{x}''''(t)} = \left[\begin{array}{c|c} \left[\begin{array}{c|c} \left.\begin{array}{ccc} A_{11}^o & A_{12}^o & A_{121}^m \\ 0_{n-p-r\times r} & A_{22}^o & A_{122}^m \\ 0_{p-m\times r} & A_{21}^o & A_{22}^m \\ \end{array}\right. & \left.\begin{array}{cc} 0_{r\times q} \\ 0_{n-p-r\times q} \\ 0_{p-m\times q} \end{array}\right. \\\hline %D_1C_1 \left.\begin{array}{cc} 0_{q\times r} & D_1\tilde{C}_1 \end{array}\right. & H \end{array}\right]\\ - \left[\begin{array}{cc} A_{121}\\ A_{1221}\\ A_{1222}\\\hline D_2 \end{array}\right] \left[\begin{array}{ccccc} 0_{m\times r} & K\tilde{C}_1 & K_c \end{array}\right] & \left.\begin{array}{cc} A_{121}\\ A_{1221}\\ A_{1222}\\\hline D_2 \end{array}\right. \\\hline \left.\begin{array}{ccc|c} A_{211} & A_{2121} &A_{2122} & 0_{m\times q} \end{array}\right. & A_{22} \end{array}\right]\\ \times \underbrace{ \left[\begin{array}{c} x'''_r(t)\\ x'''_{11}(t)\\ x'''_{12}(t)\\\hline x_c(t)\\\hline x''''_2(t)\\ \end{array}\right] }_{x''''(t)} + \left[\begin{array}{c} 0_{r\times m} \\ 0_{n-p-r\times m} \\ 0_{p-m\times m} \\\hline 0_{q\times m}\\\hline B_2 \end{array}\right] u'(t)\\ = \underbrace{ \left[\begin{array}{c|c} \left.\begin{array}{c|c} \left.\begin{array}{ccc} A_{11}^o & A_{12}^o & A_{121}^m-A_{121}K \\ 0_{n-p-r\times r} & A_{22}^o & A_{122}^m-A_{1221}K \\ 0_{p-m\times r} & A_{21}^o & A_{22}^m-A_{1222}K \end{array}\right. & \left.\begin{array}{cc} -A_{121}K_c\\ -A_{1221}K_c\\ -A_{1222}K_c\\ \end{array}\right. \\\hline %(D_1-D_2K)C_1 \left.\begin{array}{cc} 0_{q\times r} & D(D_1-D_2K)\tilde{C}_1 \end{array}\right. & H-D_2K_c \end{array}\right. & \left.\begin{array}{cc} A_{121}\\ A_{1221}\\ A_{1222}\\\hline D_2 \end{array}\right.\\\hline \left.\begin{array}{ccc|c} A_{211} & A_{2121} &A_{2122} & 0_{m\times q} \end{array}\right. & A_{22} \end{array}\right] }_{ \left[\begin{array}{cc} \tilde{\cal A}_{11} & \tilde{\cal A}_{12} \\ \tilde{\cal A}_{21} & \tilde{\cal A}_{22} \end{array}\right]} \\ \times \underbrace{ \left[\begin{array}{c} x'''_r(t)\\ x'''_{11}(t)\\ x'''_{12}(t)\\\hline x_c(t)\\\hline x''''_2(t)\\ \end{array}\right] }_{x''''(t)} + \left[\begin{array}{c} 0_{r\times m} \\ 0_{n-p-r\times m} \\ 0_{p-m\times m} \\\hline 0_{q\times m}\\\hline B_2 \end{array}\right] u'(t) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-1a787fcbba242095e1c00febe98dcfe6_l3.png)
以前の議論と同様に、
が安定行列であることを前提として、
を安定行列とする
を求めます。
[2] 一つのアプローチとして
![Rendered by QuickLaTeX.com \displaystyle{(8)\quad \begin{array}{l} \left[\begin{array}{c} \dot x'''_{11}(t)\\ \dot x'''_{12}(t) \end{array}\right]= \underbrace{ \left[\begin{array}{cc} A_{22}^o & A_{122}^m \\ A_{21}^o & A_{22}^m \\ \end{array}\right] }_{\tilde{A}_{11}} \left[\begin{array}{c} x'''_{11}(t)\\ x'''_{12}(t) \end{array}\right] + \underbrace{ \left[\begin{array}{cc} A_{1221} \\ A_{1222} \\ \end{array}\right] }_{A_{122}} \underbrace{x'''_{2}(t)}_{\tilde u(t)} \\ \underbrace{x'''_{12}(t)}_{\tilde y(t)} = \underbrace{ \left[\begin{array}{cc} 0_{p-m\times n-p-r} & I_{p-m} \end{array}\right] }_{\tilde{C}_1}} \left[\begin{array}{c} x'''_{11}(t)\\ x'''_{12}(t) \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-0a20a7d2962db1ada4badc2bf0778a94_l3.png)
に対する安定化状態フィードバック則を
![Rendered by QuickLaTeX.com \displaystyle{(9)\quad \tilde u(t)= \left[\begin{array}{cc} K_1 & K_2 \end{array}\right] \left[\begin{array}{c} x'''_{11}(t)\\ x'''_{12}(t) \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-1d4056e4bd9f566bc077ce78090defe8_l3.png)
とします。ここで、
のすべての要素は観測できないので、関数オブザーバ
![Rendered by QuickLaTeX.com \displaystyle{(10)\quad \begin{array}{l} \dot{x}_{ob}(t)=\hat{A}x_{ob}(t)+\hat{B}\underbrace{x'''_{12}(t)}_{\tilde{y}(t)}+\hat{J}\underbrace{x'''_{2}(t)}_{\tilde{u}(t)}\\ z(t)=\hat{C}x_{ob}(t)+\hat{D}\underbrace{x'''_{12}(t)}_{\tilde{y}(t)} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-7bacb834b874bae9e725be4969bb7a6c_l3.png)
を考え、この出力
に安定化状態フィードバック則
を推定させます。すなわち
![Rendered by QuickLaTeX.com \displaystyle{(11)\quad z(t)\rightarrow \tilde{u}(t)= K_1x'''_{11}(t)+K_2x'''_{12}(t) \quad(t\rightarrow\infty) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-acadd388c4b651f568bd3d243fc136c8_l3.png)
そのためには、関数オブザーバの状態
も適当な状態の線形関数を推定する必要があり、これを次のように表します。
![Rendered by QuickLaTeX.com \displaystyle{(12)\quad x_{ob}(t)\rightarrow \underbrace{ \left[\begin{array}{cc} I_{n-p-r} & -L^o \end{array}\right] }_{U} \left[\begin{array}{c} x'''_{11}(t)\\ x'''_{12}(t) \end{array}\right]= x'''_{11}(t)-L^ox'''_{12}(t) \quad(t\rightarrow\infty) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-7c76952731eb4799d0b3b24379431e11_l3.png)
いま
を適当に与えたとき、関数オブザーバのパラメータは
![Rendered by QuickLaTeX.com \displaystyle{(13)\quad \left[\begin{array}{c} U\tilde{A}_{11}\\ \left[\begin{array}{cc} {K}_1 & {K}_2 \end{array}\right] \end{array}\right] = \left[\begin{array}{cc} \hat{A} & \hat{B}\\ \hat{C} & \hat{D} \end{array}\right] \left[\begin{array}{c} U\\ \tilde{C}_1 \end{array}\right] }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-6b6bde88116790420c82bd8842dae055_l3.png)
を解いて
![Rendered by QuickLaTeX.com \displaystyle{(14)\quad \begin{array}{l} \left[\begin{array}{cc} \hat{A} & \hat{B}\\ \hat{C} & \hat{D} \end{array}\right] = \left[\begin{array}{c} U\tilde{A}_{11}\\ \left[\begin{array}{cc} {K}_1 & {K}_2 \end{array}\right] \end{array}\right] \left[\begin{array}{c} U\\ \tilde{C}_1 \end{array}\right]^{-1}\\ = \left[\begin{array}{c} \left[\begin{array}{cc} I_{n-p-r} & L^o \end{array}\right] \left[\begin{array}{cc} A_{22}^o & A_{122}^m \\ A_{21}^o & A_{22}^m \\ \end{array}\right]\\ \left[\begin{array}{cc} {K}_1 & {K}_2 \end{array}\right] \end{array}\right] \left[\begin{array}{cc} I_{n-p-r} & L^o\\ 0_{p-m\times n-p-r} & I_{p-m} \end{array}\right]^{-1}\\ = \left[\begin{array}{cc} A_{22}^o+L^oA_{21}^o & A_{122}^m+L^oA_{22}^m \\ {K}_1 & {K}_2 \end{array}\right] \left[\begin{array}{cc} I_{n-p-r} & -L^o\\ 0_{p-m\times n-p-r} & I_{p-m} \end{array}\right]\\ = \left[\begin{array}{cc} A_{22}^o+L^oA_{21}^o & A_{122}^m+L^oA_{22}^m-(A_{22}^o+L^oA_{21}^o)L^o \\ K_1 & K_2-K_1L^o \end{array}\right] \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-0096b16ad8048d3787bdad7b1de35d39_l3.png)
ここで、
は
が安定行列となるように選んでおきます。また
![Rendered by QuickLaTeX.com \displaystyle{(15)\quad \hat{J}=UA_{122}= \left[\begin{array}{cc} I_{n-p-r} & L^o \end{array}\right] \left[\begin{array}{cc} A_{1221} \\ A_{1222} \\ \end{array}\right] =A_{1221}+A_{1222}L^o }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ab3245bb625edb0bc7fb15b847f2cf26_l3.png)
以上を踏まえて、
と選び、線形関数オブザーバを
![Rendered by QuickLaTeX.com \displaystyle{(16)\quad \begin{array}{l} \underbrace{\dot{x}_{ob}(t)}_{\dot{x}_c(t)} =\underbrace{\hat{A}}_{H}\underbrace{x_{ob}(t)}_{x_c(t)} +\underbrace{\hat{B}}_{D_1}\underbrace{x'''_{12}(t)}_{\tilde{y}(t)} +\underbrace{\hat{J}}_{D_2}\underbrace{x'''_{2}(t)}_{\tilde{u}(t)}\\ \underbrace{z(t)}_{\tilde{u}(t)} =\underbrace{\hat{C}}_{K_c}\underbrace{x_{ob}(t)}_{x_c(t)} +\underbrace{\hat{D}}_{K}\underbrace{x'''_{12}(t)}_{\tilde{y}(t)} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-f25e3fd97c1fb14fbd196788b59d5a52_l3.png)
とみなせば、第2式を第1式に代入して
![Rendered by QuickLaTeX.com \displaystyle{(16')\quad \dot{x}_c(t)=(H-D_2K_c)x_c(t)+(D_1-D_2K)x'''_{12}(t) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ff92cbb5ce76d4ccdfd0d74061562654_l3.png)
ただし
![Rendered by QuickLaTeX.com \displaystyle{(16'')\quad \boxed{\begin{array}{l} H=A_{22}^o+L^oA_{21}^o\\ D_1=A_{122}^m+L^oA_{22}^m-(A_{22}^o+L^oA_{21}^o)L^o\\ D_2=A_{1221}+A_{1222}L^o\\ K_c=K_1 \\ K=K_2-K_1L^o \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-99f9532c91910aad5f346718872bea16_l3.png)
となって、補償器を得ていることになります。以下では、この補償器を用いたSM制御則の構成法について検討します。
[3] 制御対象の状態方程式と観測方程式は、それぞれ(18.1
)と(18.2
)から次式で与えられます。
![Rendered by QuickLaTeX.com \displaystyle{(17.1)\quad \begin{array}{l} \left[\begin{array}{c} \dot x'''_r(t)\\ \dot x'''_{11}(t)\\ \dot x'''_{12}(t)\\ \dot x'''_2(t) \end{array}\right]= \left[\begin{array}{ccccc} A_{11}^o & A_{12}^o & A_{121}^m & A_{121} \\ 0_{n-p-r\times r} & A_{22}^o & A_{122}^m & A_{1221} \\ 0_{p-m\times r} & A_{21}^o & A_{22}^m & A_{1222} \\ A_{211} & A_{212} & A_{213} & A_{22} \end{array}\right] \left[\begin{array}{c} x'''_r(t)\\ x'''_{11}(t)\\ x'''_{12}(t)\\ x'''_2(t) \end{array}\right]\\ + \left[\begin{array}{c} 0_{r\times m}\\ 0_{n-p-r\times m}\\ 0_{p-m\times m}\\ B_2\\ \end{array}\right] u(t)\\ (x'''_r(t)\in{\rm\bf R}^{r},x'''_{11}(t)\in{\rm\bf R}^{n-p-r},x'''_{12}(t)\in{\rm\bf R}^{p-m},x'''_{2}(t)\in{\rm\bf R}^{m}) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-3e5a41c43ebb7a8d519dbce79ce8e0a3_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(17.2)\quad \begin{array}{l} y(t) = \left[\begin{array}{cc} 0_{p\times n-p} & T \\ \end{array}\right] \left[\begin{array}{c} x'''_r(t)\\ x'''_{11}(t)\\ x'''_{12}(t)\\ x'''_2(t) \end{array}\right]=T \left[\begin{array}{c} x'''_{12}(t)\\ x'''_2(t) \end{array}\right] \quad(T\in{\rm\bf R}^{p\times p}) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-354531fad73a9f4ed2fb9035460b7345_l3.png)
補償器は(16′)から次式で与えられます。
![Rendered by QuickLaTeX.com \displaystyle{(18)\quad \begin{array}{l} \dot{x}_c(t) =Hx_c(t) +D_1x'''_{12}(t) +D_2}x'''_{2}(t)\\ (x'''_{2}(t)=K_cx_c(t)+Kx'''_{12}(t)) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-b08e0212537b9e67c7a010d123d530b6_l3.png)
このとき補償器を合わせた制御対象のダイナミックスは次式のように表すことができます。
![Rendered by QuickLaTeX.com \displaystyle{(19.1)\quad \underbrace{ \left[\begin{array}{c} \dot z_r(t)\\ \dot x_c(t)\\ \dot x'''_{12}(t)\\ \dot x'''_2(t) \end{array}\right] }_{\hat x(t)} = \underbrace{ \left[\begin{array}{ccccc} A_{11}^o & A_{12}^o & A_{121}^m-A_{12}^oL^o & A_{121} \\ 0_{q\times r} & H & D_1 & D_2 \\ 0_{p-m\times r} & A_{21}^o & A_{22}^m-A_{21}^oL^o & A_{1222} \\ A_{211} & A_{212} & A_{213}-A_{212}L^o & A_{22} \end{array}\right] }_{\hat A} \underbrace{ \left[\begin{array}{c} z_r(t)\\ x_c(t)\\ x'''_{12}(t)\\ x'''_2(t) \end{array}\right] }_{\hat x(t)} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-661ada8558710f28b5c81d3d52ca8358_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{ + \underbrace{ \left[\begin{array}{ccccc} 0_{r\times r} & 0_{r\times m} \\ 0_{q\times r} & 0_{q\times m} \\ 0_{p-m\times r} & A_{21}^o \\ A_{211} & A_{212} \end{array}\right] }_{\hat A_e} \underbrace{ \left[\begin{array}{c} e_r(t)\\ e_c(t) \end{array}\right] }_{\hat{e}(t)} + \underbrace{ \left[\begin{array}{c} 0_{r\times m}\\ 0_{q\times m}\\ 0_{p-m\times m}\\ B_2\\ \end{array}\right] }_{\hat B} u(t) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-35bbf3c7686c6043f5322df182777814_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(19.2)\quad \underbrace{ \left[\begin{array}{c} \dot e_r(t)\\ \dot e_c(t) \end{array}\right] }_{\dot{\hat{e}}(t)} = \underbrace{ \left[\begin{array}{cc} A_{11}^o & A_{12}^o \\ 0 & H \end{array}\right] }_{\hat{H}} \underbrace{ \left[\begin{array}{c} e_r(t)\\ e_c(t) \end{array}\right] }_{\hat{e}(t)} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-eb43be95adf89038069e028493af823f_l3.png)
ここで、
が安定行列であることは前提条件であり、また
は安定行列となるようにオブザーバゲイン
を決めます。
●(12)における推定誤差を
![Rendered by QuickLaTeX.com \displaystyle{(20)\quad e_c(t)=x_c(t) -(x'''_{11}(t)+L_ox'''_{12}(t)) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-1183d6cf9a6caadcfac9803a174cc6c9_l3.png)
で定義します。補償器の状態方程式は
![Rendered by QuickLaTeX.com \displaystyle{(21)\quad \begin{array}{l} \dot x_c(t)=Hx_c(t)+D_1x'''_{12}(t)+D_2x'''_{2}(t)}\\ =Hx_c(t)+(A_{122}^m+L^oA_{22}^m-(A_{22}^o+L^oA_{21}^o)L^o)x'''_{12}(t)\\ +(A_{1221}+A_{1222}L^o)x'''_{2}(t) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-b7a946972928cc6f0f0ef761b1099c52_l3.png)
となることから、次式すなわち(19.2)の下段式を得ます。
![Rendered by QuickLaTeX.com \displaystyle{(22)\quad \begin{array}{l} \dot e_c(t)=Hx_c(t)\\ +(A_{122}^m+L^oA_{22}^m-(A_{22}^o+L^oA_{21}^o)L^o)x'''_{12}(t) +(A_{1221}+A_{1222}L^o)x'''_{2}(t)\\ -(A_{22}^ox'''_{11}(t) + A_{122}^mx'''_{12}(t) + A_{1221}x'''_2(t))\\ -L_o(A_{21}^ox'''_{11}(t) + A_{22}^mx'''_{12}(t) + A_{1222}x'''_2(t))\\ =H(x_c(t) -x'''_{11}(t)-L_ox'''_{12}(t))\\ =He_c(t) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-6dd54d8531d0b03c2b2cf014192d67dc_l3.png)
●(17.1)の第1式から
![Rendered by QuickLaTeX.com \displaystyle{(23)\quad \begin{array}{l} \dot x'''_r(t)=A_{11}^ox'''_r (t)+ A_{12}^ox'''_{11}(t) + A_{121}^mx'''_{12}(t) + A_{121}x'''_2(t)\\ =A_{11}^ox'''_r(t) + A_{11}^o(-e_c(t) + x_c(t)-L_ox'''_{12}(t)) + A_{121}^mx'''_{12}(t) + A_{121}x'''_2(t)\\ = A_{11}^ox'''_r(t) + A_{11}^ox_c(t) + (A_{121}^m-A_{11}^oL_o)x'''_{12}(t) + A_{121}x'''_{2}(t) -A_{11}^oe_c(t) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-ef2fc7e3c11739c35d4b8f3320017c7c_l3.png)
ここで、
の場合の目標となるダイナミックスを次式で表します。
![Rendered by QuickLaTeX.com \displaystyle{(24)\quad \dot z_r(t)=A_{11}^oz_r(t) + A_{12}^ox_c(t) + (A_{121}^m-A_{12}^oL_o)x'''_{12}(t) + A_{121} x'''_2(t) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-47e82247f01fed42184965e521bd6b02_l3.png)
両者の状態の誤差を
![Rendered by QuickLaTeX.com \displaystyle{(25)\quad e_r(t)=z_r(t)-x'''_r(t)\\ }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-c041d0fab2a00d6f8d43b4434d0dbcec_l3.png)
とすると、次式すなわち(19.2)の上段式を得ます。
![Rendered by QuickLaTeX.com \displaystyle{(26)\quad \begin{array}{l} \dot e_r(t)=A_{11}^oz_r(t) + A_{12}^ox_c(t) + (A_{121}^m-A_{12}^oL_o)x'''_{12}(t) + A_{121} x'''_2(t)\\ -(A_{11}^ox'''_r(t) + A_{12}^ox'''_{11}(t) + A_{121}^mx'''_{12}(t) + A_{121}x'''_2(t))\\ =A_{11}^oe_r(t) + A_{12}^o(x_c(t) -x'''_{11}(t)-L_ox'''_{12}(t))\\ =A_{11}^oe_r(t) + A_{12}^oe_c(t) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-9131151607483e2ac5ef458f3d49d972_l3.png)
●(19.1)の第3式と第4式は、それぞれ(17.1)の第3式と第4式から次式のように得られます。
![Rendered by QuickLaTeX.com \displaystyle{(27)\quad \begin{array}{l} \dot x'''_{12}(t)= A_{21}^ox'''_{11}(t) + A_{22}^mx'''_{12}(t)+ A_{1222}x'''_{2}(t)\\ = A_{21}^o(-e_c(t) + x_c(t)-L_ox'''_{12}(t)) + A_{22}^mx'''_{12}(t)+ A_{1222}x'''_{2}(t)\\ = A_{21}^ox_c(t) + (A_{22}^m-A_{21}^oL_o)x'''_{12}(t)+ A_{1222}x'''_{2}(t) -A_{21}^oe_c(t) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-540da622b2aa1b613733918273716419_l3.png)
![Rendered by QuickLaTeX.com \displaystyle{(28)\quad \begin{array}{l} \dot x'''_2(t)= A_{211}x'''_r(t) + A_{212}x'''_{11}(t) + A_{213}x'''_{12}(t) + A_{22}x'''_{2}(t) \\ = A_{211}(-e_r(t)+z_r(t)) + A_{212}(-e_c(t) + x_c(t)-L_ox'''_{12}(t))\\ + A_{213}x'''_{12}(t) + A_{22}x'''_{2}(t)+B_2u(t)\\ = A_{211}z_r(t) + A_{212}x_c(t) + (A_{213}-A_{212}L_o)x'''_{12}(t)\\ + A_{22}x'''_{2}(t) -A_{211}e_r(t)-A_{212}e_c(t)+B_2u(t) \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-bf1f864f1b4322e0eb6120db2a7d536a_l3.png)
ちなみに(19.1)の第1式と第2式は、それぞれ(24)と(18)です。
●このときスイッチング関数(3′)は
![Rendered by QuickLaTeX.com \displaystyle{(3'')\quad \begin{array}{l} s(t)=Hx_c(t)+F_1C_1x'''_1(t)+F_2x'''_2(t)\\ =\boxed{\underbrace{F_2\left[\begin{array}{cccc} 0_{m\times r} & K_c & K & I_m \end{array}\right]}_{S}} \underbrace{ \left[\begin{array}{c} z_r(t)\\ x_c(t)\\ x'''_{12}(t)\\ x'''_2(t) \end{array}\right] }_{\hat x(t)} \end{array} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-b40bb61a14d162099a8c5deefe1bb6ce_l3.png)
と表すことができます。
[4] 以上の準備のもとで、補償器によるSM制御則を次のように構築します。これは次のように線形制御部とスイッチング部からなります。
![Rendered by QuickLaTeX.com \displaystyle{(29)\quad u(t)=u_\ell(t)+u_n(t) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-53ef4745ebca1dc18624d5072ab57ae0_l3.png)
線形制御部を、SM標準形(19.1)に基づいて次式のように決めます。
![Rendered by QuickLaTeX.com \displaystyle{(30)\quad \boxed{u_\ell(t)=-\underbrace{(S{\hat B})^{-1}(S{\hat A}-\Phi S)}_{L}{\hat x}(t)} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-31f42d613a69636f48b1e43e98addc28_l3.png)
ここで、
、
は(19.1)で定義されます。また
は、(17.2)より
![Rendered by QuickLaTeX.com \displaystyle{(31)\quad \left[\begin{array}{c} x'''_{12}(t)\\ x'''_2(t) \end{array}\right] =T'y(t) }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-d42b58ac60227ff80d38187e30c6c7a1_l3.png)
と表せることに注意して、次の補償器の出力として得ます。
![Rendered by QuickLaTeX.com \displaystyle{(32)\quad \boxed{\begin{array}{l} \left[\begin{array}{c} \dot z_r(t)\\ \dot x_c(t) \end{array}\right] = \underbrace{ \left[\begin{array}{ccccc} A_{11}^o & A_{12}^o \\ 0_{q\times r} & H \end{array}\right] }_{\hat H} \left[\begin{array}{c} z_r(t)\\ x_c(t) \end{array}\right] + \underbrace{ \left[\begin{array}{ccccc} A_{121}^m-A_{12}^oL^o & A_{121} \\ D_1 & D_2 \end{array}\right]T' }_{\hat D} y(t)\\ \underbrace{ \left[\begin{array}{c} z_r(t)\\ x_c(t)\\ x'''_{12}(t)\\ x'''_2(t) \end{array}\right] }_{\hat x(t)}= \underbrace{ \left[\begin{array}{ccccc} I_r & 0_{r\times q}\\ 0_{q\times r} & I_q\\ 0_{p-m\times r} & 0_{p-m\times q} \\ 0_{m\times r} & 0_{m\times q} \\ \end{array}\right]}_{\widehat{\cal C}} \left[\begin{array}{c} z_r(t)\\ x_c(t) \end{array}\right] + \underbrace{\left[\begin{array}{ccccc} 0_{r\times p-m} & 0_{r\times m} \\ 0_{q\times p-m} & 0_{q\times m} \\ I_{p-m} & 0_{p-m\times m}\\ 0_{m\times p-m} & I_m \end{array}\right]T' }_{\widehat{\cal D}} y(t) \end{array}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-87e3ff7ce930f9ed16d07870318d8f43_l3.png)
スイッチング部を、次式のように決めます。
![Rendered by QuickLaTeX.com \displaystyle{(33)\quad \boxed{u_n(t)=-\rho(t,y)\underbrace{(S{\hat B})^{-1}}_{L_n}\frac{Ps(t)}{||Ps(t)||}} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-775d9571d821d81d54af90e9b6937d4d_l3.png)
ここで、
は(3”)で与えられます。また、
は適当な安定行列
を与えて
![Rendered by QuickLaTeX.com \displaystyle{(34)\quad P\Phi+\Phi^TP=-I_m }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-458fb70edd6438811b97f8cc5cc52bbc_l3.png)
の解として求め、また
は
![Rendered by QuickLaTeX.com \displaystyle{(35)\quad \rho(t,y)=\frac{k_1||S{\hat B}||||u_\ell(t)||+||S{\hat B}||\alpha(t,y)+\gamma_2}{1-k_1\kappa(S{\hat B})} }](https://cacsd1.sakura.ne.jp/wp/wp-content/ql-cache/quicklatex.com-757ac2da2c096ac3088d1f6fa216d286_l3.png)
●以上に基づく設計手順を、数値例で示します。
MATLAB |
%ex2_of_sm.m
%-----
clear all, close all
%(A,B,C)
A=[-2 1 0 0;
0 0 4 1;
0 1 0 0;
1 -6 -9 -2];
B=[0;0;0;1];
C=[0 0 1 0;
0 0 0 1];
[nn,mm]=size(B);
[pp,nn]=size(C);
%-----
[Af,Bf,Cf,r,Ta,Aa,Ba,Ca,Tb,T,Ac,Bc,Cc,Tc]=ca_form1(A,B,C)
%-----
%Assumes the triple (A,B,C) is in the canonical form of Lemma 5.3
%p1 is an nn-pp-r vector containing the desired poles of (A22o+Lo A21o)
%p2 is an nn-mm-r vector containing the desired poles of (A11tilde-A122 K)
%p3 is an mm vector representing the poles of the range space dynamics
A11o=Af(1:r,1:r);
A12o=Af(1:r,r+1:nn-pp);
A22o=Af(r+1:nn-pp,r+1:nn-pp);
A21o=Af(nn-pp+1:nn-mm,r+1:nn-pp);
A121m=Af(1:r,nn-pp+1:nn-mm);
A122m=Af(r+1:nn-pp,nn-pp+1:nn-mm);
A22m=Af(nn-pp+1:nn-mm,nn-pp+1:nn-mm);
A121=Af(1:r,nn-mm+1:nn);
A122=Af(r+1:nn-mm,nn-mm+1:nn);
A211=Af(nn-mm+1:nn,1:r);
A212=Af(nn-mm+1:nn,r+1:nn-pp);
A213=Af(nn-mm+1:nn,nn-pp+1:nn-mm);
A22=Af(nn-mm+1:nn,nn-mm+1:nn);
A11tilde=[A22o A122m;A21o A22m];
A1221=A122(1:nn-pp-r,:);
A1222=A122(nn-pp-r+1:nn-mm-r,:);
%-----
p1=-2.5
Lo=place(A22o',A21o',p1)
Lo=Lo';
%-----
p2=[-1,-1.5]
calK=place(A11tilde,A122,p2)
K1=calK(:,1:nn-pp-r)
K2=calK(:,nn-pp-r+1:nn-mm-r)
%-----
H=A22o+Lo*A21o
D1=A122m+Lo*A22m-H*Lo
D2=A1221+Lo*A1222
K=K2-K1*Lo
Kc=K1
Hhat=[A11o A12o;
zeros(nn-pp-r,r) H]
Dhat=[A121m-A12o*Lo A121;
D1 D2]*T'
%-----
S2=eye(mm);
S=S2*[zeros(mm,r) Kc K eye(mm)]
Ahat=[A11o A12o A121m-A12o*Lo A121;
zeros(nn-pp-r,r) H D1 D2;
zeros(pp-mm,r) A21o A22m-A21o*Lo A1222;
A211 A212 A213-A212*Lo A22]
p3=-5
Phi=diag(p3)
Lambda=S*Bf
L=-inv(Lambda)*S*Ahat+inv(Lambda)*Phi*S
P=lyap(Phi',eye(mm))
%-----
%eof
|
![](https://cacsd1.sakura.ne.jp/wp/wp-content/uploads/2022/06/fig20220604.png)
図1 補償器によるSM制御のシミュレーション例