メインコンテンツへ移動

制御系CAD

制御を意識したモノつくりを目指して

メインメニュー

  • ホーム
  • 制御技術入門
    • 現代制御
      • – 演習書
  • 制御技術特論
    • GS制御
    • SM制御
  • 造船工程計画
  • profile
    • – 頭脳循環
    • – 感染制御

投稿ナビゲーション

← 前へ 次へ →

水中線状構造物:ハミルトンの原理

投稿日時: 2018年8月15日 投稿者: cacsd

●\displaystyle{\bf Derivation \#0}
\displaystyle{\underline{\int_{t_1}^{t_2}(\delta T-\delta V+\delta W)dt=} } \displaystyle{{\underline{\int_{t_1}^{t_2}m_iU(\dot{r}_L+U\tau_L)\delta r_Ldt}} }
\displaystyle{\delta T-\delta V+\delta W=(\delta T_p+\delta T_f+\delta T_b)-(\delta V_p+\delta V_b+\delta V_s)+(\delta W_{bx}+\delta W_f)}

\displaystyle{T_p={1\over 2}m\int_0^L v_p^Tv_p ds={1\over 2}m\int_0^L (\dot{x}^2+\dot{y}^2+\dot{z}^2) ds}
\displaystyle{{T_f={1\over 2}m_i\int_0^L v_f^2ds={1\over 2}m_i\int_0^L ((\dot{x}+Ux')^2+(\dot{y}+Uy')^2+(\dot{z}+Uz')^2) ds} }
\displaystyle{T_b={1\over 2}m_b v_b^Tv_b ds={1\over 2}m_b (\dot{x}_L^2+\dot{y}_L^2+\dot{z}_L^2) ds={1\over 2}m_b\int_0^L \delta_D(s-L)(\dot{x}^2+\dot{y}^2+\dot{z}^2) ds}
\displaystyle{V_p=(m+m_i-m_e)g\int_0^Lxds}
\displaystyle{V_b=m_bgx_L=m_bg\int_0^L \delta_D(s-L)x ds}
\displaystyle{{V_s=\frac{1}{2}EI\int_0^L\kappa^2ds\approx\frac{1}{2}EI\int_0^L(y'^2y''^2+z'^2z''^2+2y'y''z'z''+y''^2+z''^2)ds }}
\displaystyle{W_{bx}=P_L x_L'\delta x_L=P_L x_L'\int_0^L \delta_D(s-L)\delta x ds}
\displaystyle{W_f=f_y y+f_z z}

\displaystyle{\int_{t_1}^{t_2}(\delta T_p+\delta T_f)dt }
\displaystyle{=- (m+m_i)\int_{t_1}^{t_2}\int_0^L(\ddot y+y'\int_0^s({\dot{y'}}^2+{\dot{z'}}^2+y'\ddot{y'}+z'\ddot{z'})ds)\delta y dsdt }
\displaystyle{- (m+m_i)\int_{t_1}^{t_2}\int_0^L(\ddot z+z'\int_0^s({\dot{y'}}^2+{\dot{z'}}^2+y'\ddot{y'}+z'\ddot{z'})ds)\delta z dsdt }
\displaystyle{+ (m+m_i)\int_{t_1}^{t_2}\int_0^Ly''\int_s^L\int_0^s({\dot{y'}}^2+{\dot{z'}}^2+y'\ddot{y'}+z'\ddot{z'})dsds\delta y dsdt }
\displaystyle{+ (m+m_i)\int_{t_1}^{t_2}\int_0^Lz''\int_s^L\int_0^s({\dot{y'}}^2+{\dot{z'}}^2+y'\ddot{y'}+z'\ddot{z'})dsds\delta z dsdt }
\displaystyle{{-\int_{t_1}^{t_2}\int_0^Lm_i\dot U(L-s)(y''+{3\over 2}y'^2y''+{1\over 2}y''z'^2+y'z'z'')\delta ydsdt }}
\displaystyle{{-\int_{t_1}^{t_2}\int_0^Lm_i\dot U(L-s)(z''+{3\over 2}z'^2z''+{1\over 2}z''y'^2+z'y'y'')\delta zdsdt }}
\displaystyle{{+{1\over 2}\int_{t_1}^{t_2}\int_0^Lm_i\dot Uy''\int_s^L (y'^2+z'^2)ds\delta ydsdt }}
\displaystyle{{+{1\over 2}\int_{t_1}^{t_2}\int_0^Lm_i\dot Uz''\int_s^L (y'^2+z'^2)ds\delta zdsdt }}
\displaystyle{{-2\int_{t_1}^{t_2}\int_0^L m_iU(\dot{y}'+y'^2\dot{y}'+y'z'\dot{z}'- y''\int_s^L(y'\dot{y}'+z'\dot{z}')ds)\delta ydsdt }}
\displaystyle{{-2\int_{t_1}^{t_2}\int_0^L m_iU(\dot{z}'+z'^2\dot{z}'+z'y'\dot{y}'- z''\int_s^L(y'\dot{y}'+z'\dot{z}')ds)\delta zdsdt }}
\displaystyle{{+\int_{t_1}^{t_2}m_iU(\dot x_L\delta x_L+\dot y_L\delta y_L+\dot z_L\delta z_L)dt }}

\displaystyle{ \int_{t_1}^{t_2}\delta T_bdt }
\displaystyle{ =-m_b\int_{t_1}^{t_2}\int_0^L\delta_D(s-L)(\ddot y+y'\int_0^s({\dot{y'}}^2+{\dot{z'}}^2+y'\ddot{y'}+z'\ddot{z'})ds)\delta y dsdt }
\displaystyle{  -m_b\int_{t_1}^{t_2}\int_0^L\delta_D(s-L)(\ddot z+z'\int_0^s({\dot{y'}}^2+{\dot{z'}}^2+y'\ddot{y'}+z'\ddot{z'})ds)\delta z dsdt }
\displaystyle{ +m_b\int_{t_1}^{t_2}\int_0^Ly''\int_s^L\delta_D(s-L)\int_0^s({\dot{y'}}^2+{\dot{z'}}^2+y'\ddot{y'}+z'\ddot{z'})dsds\delta y dsdt }
\displaystyle{ +m_b\int_{t_1}^{t_2}\int_0^Lz''\int_s^L\delta_D(s-L)\int_0^s({\dot{y'}}^2+{\dot{z'}}^2+y'\ddot{y'}+z'\ddot{z'})dsds\delta z dsdt }

\displaystyle{ \int_{t_1}^{t_2}\delta V_pdt }
\displaystyle{ =-(m+m_i-m_e)g\int_{t_1}^{t_2}\int_0^L(y'+{1\over 2}y'^3+{1\over 2}y'z'^2)\delta ydsdt }
\displaystyle{ -(m+m_i-m_e)g\int_{t_1}^{t_2}\int_0^L(z'+{1\over 2}z'^3+{1\over 2}z'y'^2)\delta zdsdt }
\displaystyle{ +(m+m_i-m_e)g\int_{t_1}^{t_2}\int_0^L(L-s)(y''+{3\over 2}y'^2y''+{1\over 2}y''z'^2+y'z'z'')\delta ydsdt }
\displaystyle{ +(m+m_i-m_e)g\int_{t_1}^{t_2}\int_0^L(L-s)(z''+{3\over 2}z'^2z''+{1\over 2}z''y'^2+z'y'y'')\delta zdsdt }

\displaystyle{ \int_{t_1}^{t_2}\delta V_bdt }
\displaystyle{ =-m_bg\int_{t_1}^{t_2}\int_0^L\delta_D(s-L)(y'+{1\over 2}y'^3+{1\over 2}y'z'^2)\delta y dsdt }
\displaystyle{ -m_bg\int_{t_1}^{t_2}\int_0^L\delta_D(s-L)(z'+{1\over 2}z'^3+{1\over 2}z'y'^2)\delta z dsdt }
\displaystyle{ +m_bg\int_{t_1}^{t_2}\int_0^L(y''+{3\over 2}y'^2y''+{1\over 2}y''z'^2+y'z'z'')\delta yds dt }
\displaystyle{ +m_bg\int_{t_1}^{t_2}\int_0^L(z''+{3\over 2}z'^2z''+{1\over 2}z''y'^2+z'y'y'')\delta zds dt }

\displaystyle{{\int_{t_1}^{t_2}\delta V_sdt }}
\displaystyle{{= EI\int_{t_1}^{t_2}\int_0^L(y''''+y''^3+4y'y''y'''+y'^2y'''')\delta ydsdt }}
\displaystyle{{+EI\int_{t_1}^{t_2}\int_0^L(y''z''^2+y''z'z'''+3y'z''z'''+y'z'z'''')\delta ydsdt }}
\displaystyle{{+EI\int_{t_1}^{t_2}\int_0^L(z''''+z''^3+4z'z''z'''+z'^2z'''')\delta zdsdt }}
\displaystyle{{+EI\int_{t_1}^{t_2}\int_0^L(z''y''^2+z''y'y'''+3z'y''y'''+z'y'y'''')\delta zdsdt }}

\displaystyle{\int_{t_1}^{t_2}\delta W_{bx}dt }
\displaystyle{=-\int_{t_1}^{t_2}\int_0^L\Delta P_L x_L'\delta_D(s-L)(y'+{1\over 2}y'^3+{1\over 2}y'z'^2)\delta y dsdt }
\displaystyle{-\int_{t_1}^{t_2}\int_0^L\Delta P_L x_L'\delta_D(s-L)(z'+{1\over 2}z'^3+{1\over 2}z'y'^2)\delta z dsdt }
\displaystyle{+\int_{t_1}^{t_2}\int_0^L\Delta P_L x_L'(y''+{3\over 2}y'^2y''+{1\over 2}y''z'^2+y'z'z'')\delta yds dt }
\displaystyle{+\int_{t_1}^{t_2}\int_0^L\Delta P_L x_L'(z''+{3\over 2}z'^2z''+{1\over 2}z''y'^2+z'y'y'')\delta zds dt }

\displaystyle{ \int_{t_1}^{t_2}\delta W_fdt=\int_{t_1}^{t_2}\int_{0}^{L}(f_y\delta y+f_z\delta z)dsdt }

\displaystyle{{\int_{t_1}^{t_2}m_iU(\dot{r}_L+U\tau_L)\delta r_Ldt }}
\displaystyle{{=\int_{t_1}^{t_2}m_iU(\dot x_L\delta x_L+\dot y_L\delta y_L+\dot z_L\delta z_L)dt }}
\displaystyle{{+\int_{t_1}^{t_2}m_iU^2\int_0^L (y'^2y''+ y'z'z'' +y'' - y''\int_s^L (y'y''+z'z'')ds )\delta ydsdt }}
\displaystyle{{+\int_{t_1}^{t_2}m_iU^2\int_0^L (z'^2z''+ y'y''z' +z'' - z''\int_s^L (y'y''+z'z'')ds )\delta zdsdt }}

カテゴリー: 制御技術   作成者: cacsd パーマリンク
Proudly powered by WordPress