RCPSP法の枠組み

rcpsp11.py

OptSeq

#rcpsp11.py
from optseq import *
#====データセット
#i:[名前、期間、後続、資源]
data={
 1:["A01",3,[4,6],3],
 2:["A02",4,[5,7],1],
 3:["A03",6,[8]  ,1],
 4:["A04",4,[5,7],4],
 5:["A05",5,[8]  ,4],
 6:["A06",5,[9]  ,4],
 7:["A07",4,[10] ,5],
 8:["A08",2,[10] ,2],
 9:["A09",2,[10] ,5],
10:["A10",5,[0]  ,3],
}
#====アクティビティ
prob=Model()
act={}
for i in data:
    act[i]=prob.addActivity(data[i][0])
#====先行制約
for i in data:
    for j in data[i][2]:
        if j>0: prob.addTemporal(act[i],act[j])  
#====資源制約  
res=prob.addResource("Resource",capacity={(0,"inf"):10}) 
mode={}  
for i in data:
    mode[i]=Mode("M{0:02d}_{1:02d}".format(i,data[i][3]),\
                                    duration=data[i][1])
    mode[i].addResource(res,requirement=data[i][3])
    act[i].addModes(mode[i])
#====求解
prob.Params.Makespan=True
prob.Params.TimeLimit=1
prob.optimize()
prob.write("rcpsp11.txt")
prob.writeExcel("rcpsp11.csv")

rcpsp11.pyはPython言語で記述されています。

データセットはPythonの辞書データとして定義されており、keyがアクティビティ名となっていて、先行関係はkeyを参照して指定されていることに注意してください。ここでは簡単のために数字を用いていますが、文字列を用いることもできます。たとえばデータセットの定義は次のように行うこともできます。

OptSeq

#====データセット
data={
#"id":["名称",期間,["後続#1"," 後続#2"]、員数],
"A01":["A1(3人)",3,["A04"," A06"],3],
"A02":["A2(1人)",4,["A05"," A07"],1],
"A03":["A3(1人)",6,["A08"," 0"],1],
"A04":["A4(4人)",4,["A05"," A07"],4],
"A05":["A5(4人)",5,["A08"," 0"],4],
"A06":["A6(4人)",5,["A09"," 0"],4],
"A07":["A7(5人)",4,["A10"," 0"],5],
"A08":["A8(2人)",2,["A10"," 0"],2],
"A09":["A9(5人)",2,["A10"," 0"],5],
"A10":["A10(3人)",4,["0"," 0"],3],
}

その他のコードについては、別途詳しく説明します。