CT64 補遺6

n次系の周波数応答

次の漸近安定な1入力1出力n次系の状態空間表現を考えます。

\displaystyle{(1)\quad \left\{\begin{array}{ll} \dot{x}(t)=Ax(t)+Bu(t)&(x(t)\in{\rm\bf R}^n,u(t)\in{\rm\bf R})\\ y(t)=Cx(t)&(y(t)\in{\rm\bf R}) \end{array}\right.}

このとき、正弦波入力

\displaystyle{(2)\quad u(t)=\sin\omega t}

に対する零状態応答を計算します。そのために

\displaystyle{(3)\quad u(t)=e^{j\omega t}=\cos(\omega t)+j\sin(\omega t)}

を、零状態応答の式

\displaystyle{(4)\quad y(t)=\int_0^tC\exp(A(t-\tau))Bu(\tau)d\tau}

に代入して

(5)\quad  \begin{array}{l} \displaystyle{y(t)=\int_0^tC\exp(A(t-\tau))Be^{j\omega\tau}d\tau}\\ \displaystyle{=C\exp(At)\int_0^te^{j\omega\tau}\exp(-A\tau)Bd\tau}\\ \displaystyle{=C\exp(At)\int_0^t\exp(j\omega\tau I_n)\exp(-A\tau)Bd\tau}\\ \displaystyle{=C\exp(At)\int_0^t\exp((j\omega I_n-A)\tau)Bd\tau}\\ \displaystyle{=C\exp(At) \left[\frac{}{}\exp((j\omega I_n-A)\tau)\right]_0^t(j\omega I_n-A)^{-1}B}\\ \displaystyle{=C\exp(At) (\exp((j\omega I_n-A)t)-I_n)(j\omega I_n-A)^{-1}B}\\ \displaystyle{=-C\exp(At)(j\omega I_n-A)^{-1}B+C\exp(At)\exp(j\omega t I_n)\exp(-At)(j\omega I_n-A)^{-1}B}\\ \displaystyle{=-C\exp(At)(j\omega I_n-A)^{-1}B+C(j\omega I_n-A)^{-1}Be^{j\omega t}} \end{array}

ここでt\rightarrow\inftyとすると

(6)\quad  \begin{array}{l} \displaystyle{y(t)=C\underbrace{\exp(At)}_{\rightarrow 0\ (t\rightarrow\infty)}(j\omega I_n-A)^{-1}B+\underbrace{C(j\omega I_n-A)^{-1}B}_{G(j\omega) =|G(j\omega)|e^{j\angle G(j\omega)}}e^{j\omega t}}\\ \displaystyle{\simeq |G(j\omega)|e^{j(\omega t+\angle G(j\omega))}}\\ \displaystyle{=|G(j\omega)|\cos(\omega t+\angle G(j\omega))+j|G(j\omega)|\sin(\omega t+\angle G(j\omega))} \end{array}

これから正弦波入力(3)に対する零状態応答は、t\rightarrow\inftyのとき次式で与えられます。

\displaystyle{(7)\quad y(t)\simeq|G(j\omega)|\sin(\omega t+\angle G(j\omega))}

これは、入力が正弦波のときは、時間が十分立てば、出力も正弦波となることを示しています。その振幅と位相はそれぞれ\hat{G}(j\omega)の絶対値と偏角となっています。